provide follow features implementation:
[o-du/phy.git] / fhi_lib / lib / src / xran_compression.cpp
index 8730a20..f32c243 100644 (file)
-/******************************************************************************
-*
-*   Copyright (c) 2019 Intel.
-*
-*   Licensed under the Apache License, Version 2.0 (the "License");
-*   you may not use this file except in compliance with the License.
-*   You may obtain a copy of the License at
-*
-*       http://www.apache.org/licenses/LICENSE-2.0
-*
-*   Unless required by applicable law or agreed to in writing, software
-*   distributed under the License is distributed on an "AS IS" BASIS,
-*   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-*   See the License for the specific language governing permissions and
-*   limitations under the License.
-*
-*******************************************************************************/
-
-#include "xran_compression.hpp"
-#include <complex>
-#include <algorithm>
-#include <immintrin.h>
-
-void
-BlockFloatCompander::BlockFloatCompress_AVX512(const ExpandedData& dataIn, CompressedData* dataOut)
-{
-  __m512i maxAbs = __m512i();
-
-  /// Load data and find max(abs(RB))
-  const __m512i* rawData = reinterpret_cast<const __m512i*>(dataIn.dataExpanded);
-  static constexpr int k_numInputLoopIts = BlockFloatCompander::k_numRB / 4;
-
-#pragma unroll(k_numInputLoopIts)
-  for (int n = 0; n < k_numInputLoopIts; ++n)
-  {
-    /// Re-order the next 4RB in input data into 3 registers
-    /// Input SIMD vectors are:
-    ///   [A A A A A A A A A A A A B B B B]
-    ///   [B B B B B B B B C C C C C C C C]
-    ///   [C C C C D D D D D D D D D D D D]
-    /// Re-ordered SIMD vectors are:
-    ///   [A A A A B B B B C C C C D D D D]
-    ///   [A A A A B B B B C C C C D D D D]
-    ///   [A A A A B B B B C C C C D D D D]
-    static constexpr uint8_t k_msk1 = 0b11111100; // Copy first lane of src
-    static constexpr int k_shuff1 = 0x41;
-    const auto z_w1 = _mm512_mask_shuffle_i64x2(rawData[3 * n + 0], k_msk1, rawData[3 * n + 1], rawData[3 * n + 2], k_shuff1);
-
-    static constexpr uint8_t k_msk2 = 0b11000011; // Copy middle two lanes of src
-    static constexpr int k_shuff2 = 0xB1;
-    const auto z_w2 = _mm512_mask_shuffle_i64x2(rawData[3 * n + 1], k_msk2, rawData[3 * n + 0], rawData[3 * n + 2], k_shuff2);
-
-    static constexpr uint8_t k_msk3 = 0b00111111; // Copy last lane of src
-    static constexpr int k_shuff3 = 0xBE;
-    const auto z_w3 = _mm512_mask_shuffle_i64x2(rawData[3 * n + 2], k_msk3, rawData[3 * n + 0], rawData[3 * n + 1], k_shuff3);
-
-    /// Perform max abs on these 3 registers
-    const auto abs16_1 = _mm512_abs_epi16(z_w1);
-    const auto abs16_2 = _mm512_abs_epi16(z_w2);
-    const auto abs16_3 = _mm512_abs_epi16(z_w3);
-    const auto maxAbs_12 = _mm512_max_epi16(abs16_1, abs16_2);
-    const auto maxAbs_123 = _mm512_max_epi16(maxAbs_12, abs16_3);
-
-    /// Perform horizontal max over each lane
-    /// Swap 64b in each lane and compute max
-    static const auto k_perm64b = _mm512_set_epi64(6, 7, 4, 5, 2, 3, 0, 1);
-    auto maxAbsPerm = _mm512_permutexvar_epi64(k_perm64b, maxAbs_123);
-    auto maxAbsHorz = _mm512_max_epi16(maxAbs_123, maxAbsPerm);
-
-    /// Swap each pair of 32b in each lane and compute max
-    static const auto k_perm32b = _mm512_set_epi32(14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1);
-    maxAbsPerm = _mm512_permutexvar_epi32(k_perm32b, maxAbsHorz);
-    maxAbsHorz = _mm512_max_epi16(maxAbsHorz, maxAbsPerm);
-
-    /// Swap each IQ pair in each lane (via 32b rotation) and compute max
-    maxAbsPerm = _mm512_rol_epi32(maxAbsHorz, BlockFloatCompander::k_numBitsIQ);
-    maxAbsHorz = _mm512_max_epi16(maxAbsHorz, maxAbsPerm);
-
-    /// Insert values into maxAbs
-    /// Use sliding mask to insert wanted values into maxAbs
-    /// Pairs of values will be inserted and corrected outside of loop
-    static const auto k_select4RB = _mm512_set_epi32(28, 24, 20, 16, 28, 24, 20, 16,
-                                                     28, 24, 20, 16, 28, 24, 20, 16);
-    static constexpr uint16_t k_expMsk[k_numInputLoopIts] = { 0x000F, 0x00F0, 0x0F00, 0xF000 };
-    maxAbs = _mm512_mask_permutex2var_epi32(maxAbs, k_expMsk[n], k_select4RB, maxAbsHorz);
-  }
-
-  /// Convert to 32b by removing repeated values in maxAbs
-  static const auto k_upperWordMask = _mm512_set_epi64(0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF,
-                                                       0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF,
-                                                       0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF,
-                                                       0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF);
-  maxAbs = _mm512_and_epi64(maxAbs, k_upperWordMask);
-
-  /// Compute exponent and store for later use
-  static constexpr int k_expTotShiftBits = 32 - BlockFloatCompander::k_iqWidth + 1;
-  const auto totShiftBits = _mm512_set1_epi32(k_expTotShiftBits);
-  const auto lzCount = _mm512_lzcnt_epi32(maxAbs);
-  const auto exponent = _mm512_sub_epi32(totShiftBits, lzCount);
-  int8_t storedExp[BlockFloatCompander::k_numRB] = {};
-  static constexpr uint16_t k_expWriteMask = 0xFFFF;
-  _mm512_mask_cvtepi32_storeu_epi8(storedExp, k_expWriteMask, exponent);
-
-  /// Shift 1RB by corresponding exponent and write exponent and data to output
-  /// Output data is packed exponent first followed by corresponding compressed RB
-#pragma unroll(BlockFloatCompander::k_numRB)
-  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)
-  {
-    const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(dataIn.dataExpanded + n * BlockFloatCompander::k_numREReal);
-    auto compData = _mm512_srai_epi16(*rawDataIn, storedExp[n]);
-
-    dataOut->dataCompressed[n * (BlockFloatCompander::k_numREReal + 1)] = storedExp[n];
-    static constexpr uint32_t k_rbMask = 0x00FFFFFF; // Write mask for 1RB (24 values)
-    _mm512_mask_cvtepi16_storeu_epi8(dataOut->dataCompressed + n * (BlockFloatCompander::k_numREReal + 1) + 1, k_rbMask, compData);
-  }
-}
-
-
-void
-BlockFloatCompander::BlockFloatExpand_AVX512(const CompressedData& dataIn, ExpandedData* dataOut)
-{
-#pragma unroll(BlockFloatCompander::k_numRB)
-  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)
-  {
-    /// Expand 1RB of data
-    const __m256i* rawDataIn = reinterpret_cast<const __m256i*>(dataIn.dataCompressed + n * (BlockFloatCompander::k_numREReal + 1) + 1);
-    const auto compData16 = _mm512_cvtepi8_epi16(*rawDataIn);
-    const auto expData = _mm512_slli_epi16(compData16, *(dataIn.dataCompressed + n * (BlockFloatCompander::k_numREReal + 1)));
-
-    /// Write expanded data to output
-    static constexpr uint8_t k_rbMask64 = 0b00111111; // 64b write mask for 1RB (24 int16 values)
-    _mm512_mask_storeu_epi64(dataOut->dataExpanded + n * BlockFloatCompander::k_numREReal, k_rbMask64, expData);
-  }
-}
-
-
-void
-BlockFloatCompander::BlockFloatCompress_Basic(const ExpandedData& dataIn, CompressedData* dataOut)
-{
-  int16_t maxAbs[BlockFloatCompander::k_numRB];
-  for (int rb = 0; rb < BlockFloatCompander::k_numRB; ++rb)
-  {
-    // Find max abs value for this RB
-    maxAbs[rb] = 0;
-    for (int re = 0; re < BlockFloatCompander::k_numREReal; ++re)
-    {
-      auto dataIdx = rb * BlockFloatCompander::k_numREReal + re;
-      int16_t dataAbs = (int16_t)std::abs(dataIn.dataExpanded[dataIdx]);
-      maxAbs[rb] = std::max(maxAbs[rb], dataAbs);
-    }
-
-    // Find exponent
-    static constexpr int k_expTotShiftBits16 = 16 - BlockFloatCompander::k_iqWidth + 1;
-    auto thisExp = (int8_t)(k_expTotShiftBits16 - __lzcnt16(maxAbs[rb]));
-    auto expIdx = rb * (BlockFloatCompander::k_numREReal + 1);
-    dataOut->dataCompressed[expIdx] = thisExp;
-
-    // ARS data by exponent
-    for (int re = 0; re < BlockFloatCompander::k_numREReal; ++re)
-    {
-      auto dataIdxIn = rb * BlockFloatCompander::k_numREReal + re;
-      auto dataIdxOut = (expIdx + 1) + re;
-      dataOut->dataCompressed[dataIdxOut] = (int8_t)(dataIn.dataExpanded[dataIdxIn] >> thisExp);
-    }
-  }
-}
-
-
-void
-BlockFloatCompander::BlockFloatExpand_Basic(const CompressedData& dataIn, ExpandedData* dataOut)
-{
-  // Expand data
-  for (int rb = 0; rb < BlockFloatCompander::k_numRB; ++rb)
-  {
-    for (int re = 0; re < BlockFloatCompander::k_numREReal; ++re)
-    {
-      auto dataIdxOut = rb * BlockFloatCompander::k_numREReal + re;
-      auto expIdx = rb * (BlockFloatCompander::k_numREReal + 1);
-      auto dataIdxIn = (expIdx + 1) + re;
-      auto thisData = (int16_t)dataIn.dataCompressed[dataIdxIn];
-      auto thisExp = (int16_t)dataIn.dataCompressed[expIdx];
-      dataOut->dataExpanded[dataIdxOut] = (int16_t)(thisData << thisExp);
-    }
-  }
-}
+/******************************************************************************\r
+*\r
+*   Copyright (c) 2019 Intel.\r
+*\r
+*   Licensed under the Apache License, Version 2.0 (the "License");\r
+*   you may not use this file except in compliance with the License.\r
+*   You may obtain a copy of the License at\r
+*\r
+*       http://www.apache.org/licenses/LICENSE-2.0\r
+*\r
+*   Unless required by applicable law or agreed to in writing, software\r
+*   distributed under the License is distributed on an "AS IS" BASIS,\r
+*   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\r
+*   See the License for the specific language governing permissions and\r
+*   limitations under the License.\r
+*\r
+*******************************************************************************/\r
+\r
+#include "xran_compression.hpp"\r
+#include "xran_compression.h"\r
+#include <complex>\r
+#include <algorithm>\r
+#include <immintrin.h>\r
+#include <limits.h>\r
+#include <cstring>\r
+\r
+static int16_t saturateAbs(int16_t inVal)\r
+{\r
+  int16_t result;\r
+  if (inVal == std::numeric_limits<short>::min())\r
+  {\r
+    result = std::numeric_limits<short>::max();\r
+  }\r
+  else\r
+  {\r
+    result = (int16_t)std::abs(inVal);\r
+  }\r
+  return result;\r
+}\r
+\r
+\r
+/// Compute exponent value for a set of RB from the maximum absolute value\r
+void\r
+computeExponent(const BlockFloatCompander::ExpandedData& dataIn, int8_t* expStore)\r
+{\r
+  __m512i maxAbs = __m512i();\r
+\r
+  /// Load data and find max(abs(RB))\r
+  const __m512i* rawData = reinterpret_cast<const __m512i*>(dataIn.dataExpanded);\r
+  constexpr int k_numRBPerLoop = 4;\r
+  constexpr int k_numInputLoopIts = BlockFloatCompander::k_numRB / k_numRBPerLoop;\r
+\r
+#pragma unroll(k_numInputLoopIts)\r
+  for (int n = 0; n < k_numInputLoopIts; ++n)\r
+  {\r
+    /// Re-order the next 4RB in input data into 3 registers\r
+    /// Input SIMD vectors are:\r
+    ///   [A A A A A A A A A A A A B B B B]\r
+    ///   [B B B B B B B B C C C C C C C C]\r
+    ///   [C C C C D D D D D D D D D D D D]\r
+    /// Re-ordered SIMD vectors are:\r
+    ///   [A A A A B B B B C C C C D D D D]\r
+    ///   [A A A A B B B B C C C C D D D D]\r
+    ///   [A A A A B B B B C C C C D D D D]\r
+    constexpr uint8_t k_msk1 = 0b11111100; // Copy first lane of src\r
+    constexpr int k_shuff1 = 0x41;\r
+    const auto z_w1 = _mm512_mask_shuffle_i64x2(rawData[3 * n + 0], k_msk1, rawData[3 * n + 1], rawData[3 * n + 2], k_shuff1);\r
+\r
+    constexpr uint8_t k_msk2 = 0b11000011; // Copy middle two lanes of src\r
+    constexpr int k_shuff2 = 0xB1;\r
+    const auto z_w2 = _mm512_mask_shuffle_i64x2(rawData[3 * n + 1], k_msk2, rawData[3 * n + 0], rawData[3 * n + 2], k_shuff2);\r
+\r
+    constexpr uint8_t k_msk3 = 0b00111111; // Copy last lane of src\r
+    constexpr int k_shuff3 = 0xBE;\r
+    const auto z_w3 = _mm512_mask_shuffle_i64x2(rawData[3 * n + 2], k_msk3, rawData[3 * n + 0], rawData[3 * n + 1], k_shuff3);\r
+\r
+    /// Perform max abs on these 3 registers\r
+    const auto abs16_1 = _mm512_abs_epi16(z_w1);\r
+    const auto abs16_2 = _mm512_abs_epi16(z_w2);\r
+    const auto abs16_3 = _mm512_abs_epi16(z_w3);\r
+    const auto maxAbs_12 = _mm512_max_epi16(abs16_1, abs16_2);\r
+    const auto maxAbs_123 = _mm512_max_epi16(maxAbs_12, abs16_3);\r
+\r
+    /// Perform horizontal max over each lane\r
+    /// Swap 64b in each lane and compute max\r
+    const auto k_perm64b = _mm512_set_epi64(6, 7, 4, 5, 2, 3, 0, 1);\r
+    auto maxAbsPerm = _mm512_permutexvar_epi64(k_perm64b, maxAbs_123);\r
+    auto maxAbsHorz = _mm512_max_epi16(maxAbs_123, maxAbsPerm);\r
+\r
+    /// Swap each pair of 32b in each lane and compute max\r
+    const auto k_perm32b = _mm512_set_epi32(14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1);\r
+    maxAbsPerm = _mm512_permutexvar_epi32(k_perm32b, maxAbsHorz);\r
+    maxAbsHorz = _mm512_max_epi16(maxAbsHorz, maxAbsPerm);\r
+\r
+    /// Swap each IQ pair in each lane (via 32b rotation) and compute max\r
+    maxAbsPerm = _mm512_rol_epi32(maxAbsHorz, BlockFloatCompander::k_numBitsIQ);\r
+    maxAbsHorz = _mm512_max_epi16(maxAbsHorz, maxAbsPerm);\r
+\r
+    /// Insert values into maxAbs\r
+    /// Use sliding mask to insert wanted values into maxAbs\r
+    /// Pairs of values will be inserted and corrected outside of loop\r
+    const auto k_select4RB = _mm512_set_epi32(28, 24, 20, 16, 28, 24, 20, 16,\r
+                                              28, 24, 20, 16, 28, 24, 20, 16);\r
+    constexpr uint16_t k_expMsk[k_numInputLoopIts] = { 0x000F, 0x00F0, 0x0F00, 0xF000 };\r
+    maxAbs = _mm512_mask_permutex2var_epi32(maxAbs, k_expMsk[n], k_select4RB, maxAbsHorz);\r
+  }\r
+\r
+  /// Convert to 32b by removing repeated values in maxAbs\r
+  const auto k_upperWordMask = _mm512_set_epi64(0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF,\r
+                                                0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF,\r
+                                                0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF,\r
+                                                0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF);\r
+  maxAbs = _mm512_and_epi64(maxAbs, k_upperWordMask);\r
+\r
+  /// Compute and store exponent\r
+  const auto totShiftBits = _mm512_set1_epi32(32 - dataIn.iqWidth + 1);\r
+  const auto lzCount = _mm512_lzcnt_epi32(maxAbs);\r
+  const auto exponent = _mm512_sub_epi32(totShiftBits, lzCount);\r
+  constexpr uint16_t k_expWriteMask = 0xFFFF;\r
+  _mm512_mask_cvtepi32_storeu_epi8(expStore, k_expWriteMask, exponent);\r
+}\r
+\r
+\r
+/// Pack compressed 9 bit data in network byte order\r
+/// See https://soco.intel.com/docs/DOC-2665619\r
+__m512i\r
+networkBytePack9b(const __m512i compData)\r
+{\r
+  /// Logical shift left to align network order byte parts\r
+  const __m512i k_shiftLeft = _mm512_set_epi64(0x0000000100020003, 0x0004000500060007,\r
+                                               0x0000000100020003, 0x0004000500060007,\r
+                                               0x0000000100020003, 0x0004000500060007,\r
+                                               0x0000000100020003, 0x0004000500060007);\r
+  auto compDataPacked = _mm512_sllv_epi16(compData, k_shiftLeft);\r
+\r
+  /// First epi8 shuffle of even indexed samples\r
+  const __m512i k_byteShuffleMask1 = _mm512_set_epi64(0x0000000000000000, 0x0C0D080904050001,\r
+                                                      0x0000000000000000, 0x0C0D080904050001,\r
+                                                      0x0000000000000000, 0x0C0D080904050001,\r
+                                                      0x0000000000000000, 0x0C0D080904050001);\r
+  constexpr uint64_t k_byteMask1 = 0x000000FF00FF00FF;\r
+  auto compDataShuff1 = _mm512_maskz_shuffle_epi8(k_byteMask1, compDataPacked, k_byteShuffleMask1);\r
+\r
+  /// Second epi8 shuffle of odd indexed samples\r
+  const __m512i k_byteShuffleMask2 = _mm512_set_epi64(0x000000000000000E, 0x0F0A0B0607020300,\r
+                                                      0x000000000000000E, 0x0F0A0B0607020300,\r
+                                                      0x000000000000000E, 0x0F0A0B0607020300,\r
+                                                      0x000000000000000E, 0x0F0A0B0607020300);\r
+  constexpr uint64_t k_byteMask2 = 0x000001FE01FE01FE;\r
+  auto compDataShuff2 = _mm512_maskz_shuffle_epi8(k_byteMask2, compDataPacked, k_byteShuffleMask2);\r
+\r
+  /// Ternary blend of the two shuffled results\r
+  const __m512i k_ternLogSelect = _mm512_set_epi64(0x00000000000000FF, 0x01FC07F01FC07F00,\r
+                                                   0x00000000000000FF, 0x01FC07F01FC07F00,\r
+                                                   0x00000000000000FF, 0x01FC07F01FC07F00,\r
+                                                   0x00000000000000FF, 0x01FC07F01FC07F00);\r
+  return _mm512_ternarylogic_epi64(compDataShuff1, compDataShuff2, k_ternLogSelect, 0xd8);\r
+}\r
+\r
+\r
+/// Pack compressed 10 bit data in network byte order\r
+/// See https://soco.intel.com/docs/DOC-2665619\r
+__m512i\r
+networkBytePack10b(const __m512i compData)\r
+{\r
+  /// Logical shift left to align network order byte parts\r
+  const __m512i k_shiftLeft = _mm512_set_epi64(0x0000000200040006, 0x0000000200040006,\r
+                                               0x0000000200040006, 0x0000000200040006,\r
+                                               0x0000000200040006, 0x0000000200040006,\r
+                                               0x0000000200040006, 0x0000000200040006);\r
+  auto compDataPacked = _mm512_sllv_epi16(compData, k_shiftLeft);\r
+\r
+  /// First epi8 shuffle of even indexed samples\r
+  const __m512i k_byteShuffleMask1 = _mm512_set_epi64(0x000000000000000C, 0x0D08090004050001,\r
+                                                      0x000000000000000C, 0x0D08090004050001,\r
+                                                      0x000000000000000C, 0x0D08090004050001,\r
+                                                      0x000000000000000C, 0x0D08090004050001);\r
+  constexpr uint64_t k_byteMask1 = 0x000001EF01EF01EF;\r
+  auto compDataShuff1 = _mm512_maskz_shuffle_epi8(k_byteMask1, compDataPacked, k_byteShuffleMask1);\r
+\r
+  /// Second epi8 shuffle of odd indexed samples\r
+  const __m512i k_byteShuffleMask2 = _mm512_set_epi64(0x0000000000000E0F, 0x0A0B000607020300,\r
+                                                      0x0000000000000E0F, 0x0A0B000607020300,\r
+                                                      0x0000000000000E0F, 0x0A0B000607020300,\r
+                                                      0x0000000000000E0F, 0x0A0B000607020300);\r
+  constexpr uint64_t k_byteMask2 = 0x000003DE03DE03DE;\r
+  auto compDataShuff2 = _mm512_maskz_shuffle_epi8(k_byteMask2, compDataPacked, k_byteShuffleMask2);\r
+\r
+  /// Ternary blend of the two shuffled results\r
+  const __m512i k_ternLogSelect = _mm512_set_epi64(0x000000000000FF03, 0xF03F00FF03F03F00,\r
+                                                   0x000000000000FF03, 0xF03F00FF03F03F00,\r
+                                                   0x000000000000FF03, 0xF03F00FF03F03F00,\r
+                                                   0x000000000000FF03, 0xF03F00FF03F03F00);\r
+  return _mm512_ternarylogic_epi64(compDataShuff1, compDataShuff2, k_ternLogSelect, 0xd8);\r
+}\r
+\r
+\r
+/// Pack compressed 12 bit data in network byte order\r
+/// See https://soco.intel.com/docs/DOC-2665619\r
+__m512i\r
+networkBytePack12b(const __m512i compData)\r
+{\r
+  /// Logical shift left to align network order byte parts\r
+  const __m512i k_shiftLeft = _mm512_set_epi64(0x0000000400000004, 0x0000000400000004,\r
+                                               0x0000000400000004, 0x0000000400000004,\r
+                                               0x0000000400000004, 0x0000000400000004,\r
+                                               0x0000000400000004, 0x0000000400000004);\r
+  auto compDataPacked = _mm512_sllv_epi16(compData, k_shiftLeft);\r
+\r
+  /// First epi8 shuffle of even indexed samples\r
+  const __m512i k_byteShuffleMask1 = _mm512_set_epi64(0x00000000000C0D00, 0x0809000405000001,\r
+                                                      0x00000000000C0D00, 0x0809000405000001,\r
+                                                      0x00000000000C0D00, 0x0809000405000001,\r
+                                                      0x00000000000C0D00, 0x0809000405000001);\r
+  constexpr uint64_t k_byteMask1 = 0x000006DB06DB06DB;\r
+  auto compDataShuff1 = _mm512_maskz_shuffle_epi8(k_byteMask1, compDataPacked, k_byteShuffleMask1);\r
+\r
+  /// Second epi8 shuffle of odd indexed samples\r
+  const __m512i k_byteShuffleMask2 = _mm512_set_epi64(0x000000000E0F000A, 0x0B00060700020300,\r
+                                                      0x000000000E0F000A, 0x0B00060700020300,\r
+                                                      0x000000000E0F000A, 0x0B00060700020300,\r
+                                                      0x000000000E0F000A, 0x0B00060700020300);\r
+  constexpr uint64_t k_byteMask2 = 0x00000DB60DB60DB6;\r
+  auto compDataShuff2 = _mm512_maskz_shuffle_epi8(k_byteMask2, compDataPacked, k_byteShuffleMask2);\r
+\r
+  /// Ternary blend of the two shuffled results\r
+  const __m512i k_ternLogSelect = _mm512_set_epi64(0x00000000FF0F00FF, 0x0F00FF0F00FF0F00,\r
+                                                   0x00000000FF0F00FF, 0x0F00FF0F00FF0F00,\r
+                                                   0x00000000FF0F00FF, 0x0F00FF0F00FF0F00,\r
+                                                   0x00000000FF0F00FF, 0x0F00FF0F00FF0F00);\r
+  return _mm512_ternarylogic_epi64(compDataShuff1, compDataShuff2, k_ternLogSelect, 0xd8);\r
+}\r
+\r
+\r
+/// Unpack compressed 9 bit data in network byte order\r
+/// See https://soco.intel.com/docs/DOC-2665619\r
+__m512i\r
+networkByteUnpack9b(const uint8_t* inData)\r
+{\r
+  /// Align chunks of compressed bytes into lanes to allow for expansion\r
+  const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(inData);\r
+  const auto k_expPerm = _mm512_set_epi32(15, 14, 13, 12,  7,  6,  5,  4,\r
+                                           5,  4,  3,  2,  3,  2,  1,  0);\r
+  auto expData = _mm512_permutexvar_epi32(k_expPerm, *rawDataIn);\r
+\r
+  /// Byte shuffle to get all bits for each sample into 16b chunks\r
+  /// Due to previous permute to get chunks of bytes into each lane, there is\r
+  /// a different shuffle offset in each lane\r
+  const __m512i k_byteShuffleMask = _mm512_set_epi64(0x0F0E0D0C0B0A0908, 0x0706050403020100,\r
+                                                     0x090A080907080607, 0x0506040503040203,\r
+                                                     0x0809070806070506, 0x0405030402030102,\r
+                                                     0x0708060705060405, 0x0304020301020001);\r
+  expData = _mm512_shuffle_epi8(expData, k_byteShuffleMask);\r
+\r
+  /// Logical shift left to set sign bit\r
+  const __m512i k_slBits = _mm512_set_epi64(0x0007000600050004, 0x0003000200010000,\r
+                                            0x0007000600050004, 0x0003000200010000,\r
+                                            0x0007000600050004, 0x0003000200010000,\r
+                                            0x0007000600050004, 0x0003000200010000);\r
+  expData = _mm512_sllv_epi16(expData, k_slBits);\r
+\r
+  /// Mask to zero unwanted bits\r
+  const __m512i k_expMask = _mm512_set1_epi16(0xFF80);\r
+  return _mm512_and_epi64(expData, k_expMask);\r
+}\r
+\r
+\r
+/// Unpack compressed 10 bit data in network byte order\r
+/// See https://soco.intel.com/docs/DOC-2665619\r
+__m512i\r
+networkByteUnpack10b(const uint8_t* inData)\r
+{\r
+  /// Align chunks of compressed bytes into lanes to allow for expansion\r
+  const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(inData);\r
+  const auto k_expPerm = _mm512_set_epi32(15, 14, 13, 12,  8,  7,  6,  5,\r
+                                           5,  4,  3,  2,  3,  2,  1,  0);\r
+  auto expData = _mm512_permutexvar_epi32(k_expPerm, *rawDataIn);\r
+\r
+  /// Byte shuffle to get all bits for each sample into 16b chunks\r
+  /// Due to previous permute to get chunks of bytes into each lane, lanes\r
+  /// 0 and 2 happen to be aligned, but lane 1 is offset by 2 bytes\r
+  const __m512i k_byteShuffleMask = _mm512_set_epi64(0x0809070806070506, 0x0304020301020001,\r
+                                                     0x0809070806070506, 0x0304020301020001,\r
+                                                     0x0A0B090A08090708, 0x0506040503040203,\r
+                                                     0x0809070806070506, 0x0304020301020001);\r
+  expData = _mm512_shuffle_epi8(expData, k_byteShuffleMask);\r
+\r
+  /// Logical shift left to set sign bit\r
+  const __m512i k_slBits = _mm512_set_epi64(0x0006000400020000, 0x0006000400020000,\r
+                                            0x0006000400020000, 0x0006000400020000,\r
+                                            0x0006000400020000, 0x0006000400020000,\r
+                                            0x0006000400020000, 0x0006000400020000);\r
+  expData = _mm512_sllv_epi16(expData, k_slBits);\r
+\r
+  /// Mask to zero unwanted bits\r
+  const __m512i k_expMask = _mm512_set1_epi16(0xFFC0);\r
+  return _mm512_and_epi64(expData, k_expMask);\r
+}\r
+\r
+\r
+/// Unpack compressed 12 bit data in network byte order\r
+/// See https://soco.intel.com/docs/DOC-2665619\r
+__m512i\r
+networkByteUnpack12b(const uint8_t* inData)\r
+{\r
+  /// Align chunks of compressed bytes into lanes to allow for expansion\r
+  const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(inData);\r
+  const auto k_expPerm = _mm512_set_epi32(15, 14, 13, 12,  9,  8,  7,  6,\r
+                                           6,  5,  4,  3,  3,  2,  1,  0);\r
+  auto expData = _mm512_permutexvar_epi32(k_expPerm, *rawDataIn);\r
+\r
+  /// Byte shuffle to get all bits for each sample into 16b chunks\r
+  /// For 12b mantissa all lanes post-permute are aligned and require same shuffle offset\r
+  const __m512i k_byteShuffleMask = _mm512_set_epi64(0x0A0B090A07080607, 0x0405030401020001,\r
+                                                     0x0A0B090A07080607, 0x0405030401020001,\r
+                                                     0x0A0B090A07080607, 0x0405030401020001,\r
+                                                     0x0A0B090A07080607, 0x0405030401020001);\r
+  expData = _mm512_shuffle_epi8(expData, k_byteShuffleMask);\r
+\r
+  /// Logical shift left to set sign bit\r
+  const __m512i k_slBits = _mm512_set_epi64(0x0004000000040000, 0x0004000000040000,\r
+                                            0x0004000000040000, 0x0004000000040000,\r
+                                            0x0004000000040000, 0x0004000000040000,\r
+                                            0x0004000000040000, 0x0004000000040000);\r
+  expData = _mm512_sllv_epi16(expData, k_slBits);\r
+\r
+  /// Mask to zero unwanted bits\r
+  const __m512i k_expMask = _mm512_set1_epi16(0xFFF0);\r
+  return _mm512_and_epi64(expData, k_expMask);\r
+}\r
+\r
+\r
+/// 8 bit compression\r
+void\r
+BlockFloatCompander::BlockFloatCompress_8b_AVX512(const ExpandedData& dataIn, CompressedData* dataOut)\r
+{\r
+  /// Compute exponent and store for later use\r
+  int8_t storedExp[BlockFloatCompander::k_numRB] = {};\r
+  computeExponent(dataIn, storedExp);\r
+\r
+  /// Shift 1RB by corresponding exponent and write exponent and data to output\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(dataIn.dataExpanded + n * BlockFloatCompander::k_numREReal);\r
+    auto compData = _mm512_srai_epi16(*rawDataIn, storedExp[n]);\r
+    auto thisRBExpAddr = n * (BlockFloatCompander::k_numREReal + 1);\r
+    /// Store exponent first\r
+    dataOut->dataCompressed[thisRBExpAddr] = storedExp[n];\r
+    /// Store compressed RB\r
+    constexpr uint32_t k_rbMask = 0x00FFFFFF; // Write mask for 1RB (24 values)\r
+    _mm256_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1, k_rbMask, _mm512_cvtepi16_epi8(compData));\r
+  }\r
+}\r
+\r
+\r
+/// 9 bit compression\r
+void\r
+BlockFloatCompander::BlockFloatCompress_9b_AVX512(const ExpandedData& dataIn, CompressedData* dataOut)\r
+{\r
+  /// Compute exponent and store for later use\r
+  int8_t storedExp[BlockFloatCompander::k_numRB] = {};\r
+  computeExponent(dataIn, storedExp);\r
+\r
+  /// Shift 1RB by corresponding exponent and write exponent and data to output\r
+  /// Output data is packed exponent first followed by corresponding compressed RB\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    /// Apply exponent shift\r
+    const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(dataIn.dataExpanded + n * BlockFloatCompander::k_numREReal);\r
+    auto compData = _mm512_srai_epi16(*rawDataIn, storedExp[n]);\r
+\r
+    /// Pack compressed data network byte order\r
+    auto compDataBytePacked = networkBytePack9b(compData);\r
+\r
+    /// Store exponent first\r
+    constexpr int k_totNumBytesPerRB = 28;\r
+    auto thisRBExpAddr = n * k_totNumBytesPerRB;\r
+    dataOut->dataCompressed[thisRBExpAddr] = storedExp[n];\r
+\r
+    /// Now have 1 RB worth of bytes separated into 3 chunks (1 per lane)\r
+    /// Use three offset stores to join\r
+    constexpr uint16_t k_RbWriteMask = 0x01FF;\r
+    constexpr int k_numDataBytesPerLane = 9;\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1, k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 0));\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1 + k_numDataBytesPerLane, k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 1));\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1 + (2 * k_numDataBytesPerLane), k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 2));\r
+  }\r
+}\r
+\r
+\r
+/// 10 bit compression\r
+void\r
+BlockFloatCompander::BlockFloatCompress_10b_AVX512(const ExpandedData& dataIn, CompressedData* dataOut)\r
+{\r
+  /// Compute exponent and store for later use\r
+  int8_t storedExp[BlockFloatCompander::k_numRB] = {};\r
+  computeExponent(dataIn, storedExp);\r
+\r
+  /// Shift 1RB by corresponding exponent and write exponent and data to output\r
+  /// Output data is packed exponent first followed by corresponding compressed RB\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    /// Apply exponent shift\r
+    const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(dataIn.dataExpanded + n * BlockFloatCompander::k_numREReal);\r
+    auto compData = _mm512_srai_epi16(*rawDataIn, storedExp[n]);\r
+\r
+    /// Pack compressed data network byte order\r
+    auto compDataBytePacked = networkBytePack10b(compData);\r
+\r
+    /// Store exponent first\r
+    constexpr int k_totNumBytesPerRB = 31;\r
+    auto thisRBExpAddr = n * k_totNumBytesPerRB;\r
+    dataOut->dataCompressed[thisRBExpAddr] = storedExp[n];\r
+\r
+    /// Now have 1 RB worth of bytes separated into 3 chunks (1 per lane)\r
+    /// Use three offset stores to join\r
+    constexpr uint16_t k_RbWriteMask = 0x03FF;\r
+    constexpr int k_numDataBytesPerLane = 10;\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1, k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 0));\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1 + k_numDataBytesPerLane, k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 1));\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1 + (2 * k_numDataBytesPerLane), k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 2));\r
+  }\r
+}\r
+\r
+\r
+/// 12 bit compression\r
+void\r
+BlockFloatCompander::BlockFloatCompress_12b_AVX512(const ExpandedData& dataIn, CompressedData* dataOut)\r
+{\r
+  /// Compute exponent and store for later use\r
+  int8_t storedExp[BlockFloatCompander::k_numRB] = {};\r
+  computeExponent(dataIn, storedExp);\r
+\r
+  /// Shift 1RB by corresponding exponent and write exponent and data to output\r
+  /// Output data is packed exponent first followed by corresponding compressed RB\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    /// Apply exponent shift\r
+    const __m512i* rawDataIn = reinterpret_cast<const __m512i*>(dataIn.dataExpanded + n * BlockFloatCompander::k_numREReal);\r
+    auto compData = _mm512_srai_epi16(*rawDataIn, storedExp[n]);\r
+\r
+    /// Pack compressed data network byte order\r
+    auto compDataBytePacked = networkBytePack12b(compData);\r
+\r
+    /// Store exponent first\r
+    constexpr int k_totNumBytesPerRB = 37;\r
+    auto thisRBExpAddr = n * k_totNumBytesPerRB;\r
+    dataOut->dataCompressed[thisRBExpAddr] = storedExp[n];\r
+\r
+    /// Now have 1 RB worth of bytes separated into 3 chunks (1 per lane)\r
+    /// Use three offset stores to join\r
+    constexpr uint16_t k_RbWriteMask = 0x0FFF;\r
+    constexpr int k_numDataBytesPerLane = 12;\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1, k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 0));\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1 + k_numDataBytesPerLane, k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 1));\r
+    _mm_mask_storeu_epi8(dataOut->dataCompressed + thisRBExpAddr + 1 + (2 * k_numDataBytesPerLane), k_RbWriteMask, _mm512_extracti64x2_epi64(compDataBytePacked, 2));\r
+  }\r
+}\r
+\r
+\r
+/// 8 bit expansion\r
+void\r
+BlockFloatCompander::BlockFloatExpand_8b_AVX512(const CompressedData& dataIn, ExpandedData* dataOut)\r
+{\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    /// Expand 1RB of data\r
+    auto expAddr = n * (BlockFloatCompander::k_numREReal + 1);\r
+    const __m256i* rawDataIn = reinterpret_cast<const __m256i*>(dataIn.dataCompressed + expAddr + 1);\r
+    const auto compData16 = _mm512_cvtepi8_epi16(*rawDataIn);\r
+    const auto expData = _mm512_slli_epi16(compData16, *(dataIn.dataCompressed + expAddr));\r
+    /// Write expanded data to output\r
+    constexpr uint8_t k_rbMask64 = 0b00111111; // 64b write mask for 1RB (24 int16 values)\r
+    _mm512_mask_storeu_epi64(dataOut->dataExpanded + n * BlockFloatCompander::k_numREReal, k_rbMask64, expData);\r
+  }\r
+}\r
+\r
+\r
+/// 9 bit expansion\r
+void\r
+BlockFloatCompander::BlockFloatExpand_9b_AVX512(const CompressedData& dataIn, ExpandedData* dataOut)\r
+{\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    constexpr int k_totNumBytesPerRB = 28;\r
+    auto expAddr = n * k_totNumBytesPerRB;\r
+\r
+    /// Unpack network order packed data\r
+    auto expData = networkByteUnpack9b(dataIn.dataCompressed + expAddr + 1);\r
+\r
+    /// Apply exponent scaling (by appropriate arithmetic shift right)\r
+    constexpr int k_maxExpShift = 7;\r
+    expData = _mm512_srai_epi16(expData, k_maxExpShift - *(dataIn.dataCompressed + expAddr));\r
+\r
+    /// Write expanded data to output\r
+    static constexpr uint32_t k_WriteMask = 0x00FFFFFF;\r
+    _mm512_mask_storeu_epi16(dataOut->dataExpanded + n * BlockFloatCompander::k_numREReal, k_WriteMask, expData);\r
+  }\r
+}\r
+\r
+\r
+/// 10 bit expansion\r
+void\r
+BlockFloatCompander::BlockFloatExpand_10b_AVX512(const CompressedData& dataIn, ExpandedData* dataOut)\r
+{\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    constexpr int k_totNumBytesPerRB = 31;\r
+    auto expAddr = n * k_totNumBytesPerRB;\r
+\r
+    /// Unpack network order packed data\r
+    auto expData = networkByteUnpack10b(dataIn.dataCompressed + expAddr + 1);\r
+\r
+    /// Apply exponent scaling (by appropriate arithmetic shift right)\r
+    constexpr int k_maxExpShift = 6;\r
+    expData = _mm512_srai_epi16(expData, k_maxExpShift - *(dataIn.dataCompressed + expAddr));\r
+\r
+    /// Write expanded data to output\r
+    static constexpr uint32_t k_WriteMask = 0x00FFFFFF;\r
+    _mm512_mask_storeu_epi16(dataOut->dataExpanded + n * BlockFloatCompander::k_numREReal, k_WriteMask, expData);\r
+  }\r
+}\r
+\r
+\r
+/// 12 bit expansion\r
+void\r
+BlockFloatCompander::BlockFloatExpand_12b_AVX512(const CompressedData& dataIn, ExpandedData* dataOut)\r
+{\r
+#pragma unroll(BlockFloatCompander::k_numRB)\r
+  for (int n = 0; n < BlockFloatCompander::k_numRB; ++n)\r
+  {\r
+    constexpr int k_totNumBytesPerRB = 37;\r
+    auto expAddr = n * k_totNumBytesPerRB;\r
+\r
+    /// Unpack network order packed data\r
+    auto expData = networkByteUnpack12b(dataIn.dataCompressed + expAddr + 1);\r
+\r
+    /// Apply exponent scaling (by appropriate arithmetic shift right)\r
+    constexpr int k_maxExpShift = 4;\r
+    expData = _mm512_srai_epi16(expData, k_maxExpShift - *(dataIn.dataCompressed + expAddr));\r
+\r
+    /// Write expanded data to output\r
+    static constexpr uint32_t k_WriteMask = 0x00FFFFFF;\r
+    _mm512_mask_storeu_epi16(dataOut->dataExpanded + n * BlockFloatCompander::k_numREReal, k_WriteMask, expData);\r
+  }\r
+}\r
+\r
+\r
+/// Reference compression\r
+void\r
+BlockFloatCompander::BlockFloatCompress_Basic(const ExpandedData& dataIn, CompressedData* dataOut)\r
+{\r
+  int dataOutIdx = 0;\r
+  int16_t iqMask = (int16_t)((1 << dataIn.iqWidth) - 1);\r
+  int byteShiftUnits = dataIn.iqWidth - 8;\r
+\r
+  for (int rb = 0; rb < BlockFloatCompander::k_numRB; ++rb)\r
+  {\r
+    /// Find max abs value for this RB\r
+    int16_t maxAbs = 0;\r
+    for (int re = 0; re < BlockFloatCompander::k_numREReal; ++re)\r
+    {\r
+      auto dataIdx = rb * BlockFloatCompander::k_numREReal + re;\r
+      auto dataAbs = saturateAbs(dataIn.dataExpanded[dataIdx]);\r
+      maxAbs = std::max(maxAbs, dataAbs);\r
+    }\r
+\r
+    // Find exponent and insert into byte stream\r
+    auto thisExp = (uint8_t)(std::max(0,(16 - dataIn.iqWidth + 1 - __lzcnt16(maxAbs))));\r
+    dataOut->dataCompressed[dataOutIdx++] = thisExp;\r
+\r
+    /// ARS data by exponent and pack bytes in Network order\r
+    /// This uses a sliding buffer where one or more bytes are\r
+    /// extracted after the insertion of each compressed sample\r
+    static constexpr int k_byteMask = 0xFF;\r
+    int byteShiftVal = -8;\r
+    int byteBuffer = { 0 };\r
+    for (int re = 0; re < BlockFloatCompander::k_numREReal; ++re)\r
+    {\r
+      auto dataIdxIn = rb * BlockFloatCompander::k_numREReal + re;\r
+      auto thisRE = dataIn.dataExpanded[dataIdxIn] >> thisExp;\r
+      byteBuffer = (byteBuffer << dataIn.iqWidth) + (int)(thisRE & iqMask);\r
+\r
+      byteShiftVal += (8 + byteShiftUnits);\r
+      while (byteShiftVal >= 0)\r
+      {\r
+        auto thisByte = (uint8_t)((byteBuffer >> byteShiftVal) & k_byteMask);\r
+        dataOut->dataCompressed[dataOutIdx++] = thisByte;\r
+        byteShiftVal -= 8;\r
+      }\r
+    }\r
+  }\r
+  dataOut->iqWidth = dataIn.iqWidth;\r
+}\r
+\r
+/// Reference expansion\r
+void\r
+BlockFloatCompander::BlockFloatExpand_Basic(const CompressedData& dataIn, ExpandedData* dataOut)\r
+{\r
+  uint32_t iqMask = (uint32_t)(UINT_MAX - ((1 << (32 - dataIn.iqWidth)) - 1));\r
+  uint32_t byteBuffer = { 0 };\r
+  int numBytesPerRB = (3 * dataIn.iqWidth) + 1;\r
+  int bitPointer = 0;\r
+  int dataIdxOut = 0;\r
+\r
+  for (int rb = 0; rb < BlockFloatCompander::k_numRB; ++rb)\r
+  {\r
+    auto expIdx = rb * numBytesPerRB;\r
+    auto signExtShift = 32 - dataIn.iqWidth - dataIn.dataCompressed[expIdx];\r
+\r
+    for (int b = 0; b < numBytesPerRB - 1; ++b)\r
+    {\r
+      auto dataIdxIn = (expIdx + 1) + b;\r
+      auto thisByte = (uint16_t)dataIn.dataCompressed[dataIdxIn];\r
+      byteBuffer = (uint32_t)((byteBuffer << 8) + thisByte);\r
+      bitPointer += 8;\r
+      while (bitPointer >= dataIn.iqWidth)\r
+      {\r
+        /// byteBuffer currently has enough data in it to extract a sample\r
+        /// Shift left first to set sign bit at MSB, then shift right to\r
+        /// sign extend down to iqWidth. Finally recast to int16.\r
+        int32_t thisSample32 = (int32_t)((byteBuffer << (32 - bitPointer)) & iqMask);\r
+        int16_t thisSample = (int16_t)(thisSample32 >> signExtShift);\r
+        bitPointer -= dataIn.iqWidth;\r
+        dataOut->dataExpanded[dataIdxOut++] = thisSample;\r
+      }\r
+    }\r
+  }\r
+}\r
+\r
+/// Reference compression\r
+void\r
+BlockFloatCompanderBFW::BlockFloatCompress_Basic(const BlockFloatCompanderBFW::ExpandedData& dataIn, BlockFloatCompanderBFW::CompressedData* dataOut)\r
+{\r
+  int dataOutIdx = 0;\r
+  int16_t iqMask = (int16_t)((1 << dataIn.iqWidth) - 1);\r
+  int byteShiftUnits = dataIn.iqWidth - 8;\r
+\r
+  for (int rb = 0; rb < BlockFloatCompanderBFW::k_numRB; ++rb)\r
+  {\r
+    /// Find max abs value for this RB\r
+    int16_t maxAbs = 0;\r
+    for (int re = 0; re < BlockFloatCompanderBFW::k_numREReal; ++re)\r
+    {\r
+      auto dataIdx = rb * BlockFloatCompanderBFW::k_numREReal + re;\r
+      auto dataAbs = saturateAbs(dataIn.dataExpanded[dataIdx]);\r
+      maxAbs = std::max(maxAbs, dataAbs);\r
+    }\r
+\r
+    // Find exponent and insert into byte stream\r
+    auto thisExp = (uint8_t)(std::max(0,(16 - dataIn.iqWidth + 1 - __lzcnt16(maxAbs))));\r
+    dataOut->dataCompressed[dataOutIdx++] = thisExp;\r
+\r
+    /// ARS data by exponent and pack bytes in Network order\r
+    /// This uses a sliding buffer where one or more bytes are\r
+    /// extracted after the insertion of each compressed sample\r
+    static constexpr int k_byteMask = 0xFF;\r
+    int byteShiftVal = -8;\r
+    int byteBuffer = { 0 };\r
+    for (int re = 0; re < BlockFloatCompanderBFW::k_numREReal; ++re)\r
+    {\r
+      auto dataIdxIn = rb * BlockFloatCompanderBFW::k_numREReal + re;\r
+      auto thisRE = dataIn.dataExpanded[dataIdxIn] >> thisExp;\r
+      byteBuffer = (byteBuffer << dataIn.iqWidth) + (int)(thisRE & iqMask);\r
+\r
+      byteShiftVal += (8 + byteShiftUnits);\r
+      while (byteShiftVal >= 0)\r
+      {\r
+        auto thisByte = (uint8_t)((byteBuffer >> byteShiftVal) & k_byteMask);\r
+        dataOut->dataCompressed[dataOutIdx++] = thisByte;\r
+        byteShiftVal -= 8;\r
+      }\r
+    }\r
+  }\r
+  dataOut->iqWidth = dataIn.iqWidth;\r
+}\r
+\r
+/// Reference expansion\r
+void\r
+BlockFloatCompanderBFW::BlockFloatExpand_Basic(const BlockFloatCompanderBFW::CompressedData& dataIn, BlockFloatCompanderBFW::ExpandedData* dataOut)\r
+{\r
+  uint32_t iqMask = (uint32_t)(UINT_MAX - ((1 << (32 - dataIn.iqWidth)) - 1));\r
+  uint32_t byteBuffer = { 0 };\r
+  int numBytesPerRB = (3 * dataIn.iqWidth) + 1;\r
+  int bitPointer = 0;\r
+  int dataIdxOut = 0;\r
+\r
+  for (int rb = 0; rb < BlockFloatCompanderBFW::k_numRB; ++rb)\r
+  {\r
+    auto expIdx = rb * numBytesPerRB;\r
+    auto signExtShift = 32 - dataIn.iqWidth - dataIn.dataCompressed[expIdx];\r
+\r
+    for (int b = 0; b < numBytesPerRB - 1; ++b)\r
+    {\r
+      auto dataIdxIn = (expIdx + 1) + b;\r
+      auto thisByte = (uint16_t)dataIn.dataCompressed[dataIdxIn];\r
+      byteBuffer = (uint32_t)((byteBuffer << 8) + thisByte);\r
+      bitPointer += 8;\r
+      while (bitPointer >= dataIn.iqWidth)\r
+      {\r
+        /// byteBuffer currently has enough data in it to extract a sample\r
+        /// Shift left first to set sign bit at MSB, then shift right to\r
+        /// sign extend down to iqWidth. Finally recast to int16.\r
+        int32_t thisSample32 = (int32_t)((byteBuffer << (32 - bitPointer)) & iqMask);\r
+        int16_t thisSample = (int16_t)(thisSample32 >> signExtShift);\r
+        bitPointer -= dataIn.iqWidth;\r
+        dataOut->dataExpanded[dataIdxOut++] = thisSample;\r
+      }\r
+    }\r
+  }\r
+}\r
+\r
+#define RB_NUM_ROUNDUP(rb) \\r
+    (BlockFloatCompander::k_numRB * ((rb + BlockFloatCompander::k_numRB - 1) / BlockFloatCompander::k_numRB))\r
+\r
+\r
+/** callback function type for Symbol packet */\r
+typedef void (*xran_bfp_compress_fn)(const BlockFloatCompander::ExpandedData& dataIn,\r
+                                     BlockFloatCompander::CompressedData* dataOut);\r
+\r
+int32_t\r
+xranlib_compress_avx512(const struct xranlib_compress_request *request,\r
+                        struct xranlib_compress_response *response)\r
+{\r
+    BlockFloatCompander::ExpandedData expandedDataInput;\r
+    BlockFloatCompander::CompressedData compressedDataOut;\r
+    xran_bfp_compress_fn com_fn = NULL;\r
+    int16_t numRBs = request->numRBs;\r
+    int16_t len = 0;\r
+\r
+    switch (request->iqWidth){\r
+        case 8:\r
+            expandedDataInput.iqWidth = 8;\r
+            com_fn = BlockFloatCompander::BlockFloatCompress_8b_AVX512;\r
+            break;\r
+        case 9:\r
+            expandedDataInput.iqWidth = 9;\r
+            com_fn = BlockFloatCompander::BlockFloatCompress_9b_AVX512;\r
+            break;\r
+        case 10:\r
+            expandedDataInput.iqWidth = 10;\r
+            com_fn = BlockFloatCompander::BlockFloatCompress_10b_AVX512;\r
+            break;\r
+        case 12:\r
+            expandedDataInput.iqWidth = 12;\r
+            com_fn = BlockFloatCompander::BlockFloatCompress_12b_AVX512;\r
+            break;\r
+        default:\r
+            expandedDataInput.iqWidth = request->iqWidth;\r
+            com_fn = BlockFloatCompander::BlockFloatCompress_Basic;\r
+            break;\r
+    }\r
+\r
+    for (int16_t block_idx = 0;\r
+        block_idx < RB_NUM_ROUNDUP(numRBs)/BlockFloatCompander::k_numRB /*+ 1*/; /*  16 RBs at time */\r
+        block_idx++) {\r
+\r
+        expandedDataInput.dataExpanded =\r
+            &request->data_in[block_idx*BlockFloatCompander::k_numSampsExpanded];\r
+        compressedDataOut.dataCompressed =\r
+            (uint8_t*)&response->data_out[len];\r
+\r
+        com_fn(expandedDataInput, &compressedDataOut);\r
+        len  += ((3 * expandedDataInput.iqWidth) + 1) * std::min((int16_t)BlockFloatCompander::k_numRB,(int16_t)numRBs);\r
+    }\r
+\r
+    response->len =  ((3 * expandedDataInput.iqWidth) + 1) * numRBs;\r
+\r
+    return 0;\r
+}\r
+\r
+/** callback function type for Symbol packet */\r
+typedef void (*xran_bfp_compress_bfw_fn)(const BlockFloatCompanderBFW::ExpandedData& dataIn, BlockFloatCompanderBFW::CompressedData* dataOut);\r
+\r
+int32_t\r
+xranlib_compress_avx512_bfw(const struct xranlib_compress_request *request,\r
+                        struct xranlib_compress_response *response)\r
+{\r
+    BlockFloatCompanderBFW::ExpandedData expandedDataInput;\r
+    BlockFloatCompanderBFW::CompressedData compressedDataKern;\r
+    xran_bfp_compress_bfw_fn com_fn = NULL;\r
+\r
+#if 0\r
+    for (int m = 0; m < BlockFloatCompander::k_numRB; ++m){\r
+        for (int n = 0; n < BlockFloatCompander::k_numREReal; ++n){\r
+            expandedDataInput.dataExpanded[m*BlockFloatCompander::k_numREReal+n] =\r
+                request->data_in[m*BlockFloatCompander::k_numREReal+n];\r
+        }\r
+    }\r
+#endif\r
+\r
+    expandedDataInput.dataExpanded = request->data_in;\r
+    compressedDataKern.dataCompressed = (uint8_t*)response->data_out;\r
+\r
+    com_fn = BlockFloatCompanderBFW::BlockFloatCompress_Basic;\r
+    switch (request->iqWidth){\r
+        case 8:\r
+            expandedDataInput.iqWidth = 8;\r
+            break;\r
+        case 9:\r
+            expandedDataInput.iqWidth = 9;\r
+            //com_fn = BlockFloatCompanderBFW::BlockFloatExpand_9b_AVX512\r
+            break;\r
+        case 10:\r
+            expandedDataInput.iqWidth = 10;\r
+            break;\r
+        case 12:\r
+            expandedDataInput.iqWidth = 12;\r
+            break;\r
+        default:\r
+            printf("bfwIqWidth is not supported %d\n", request->iqWidth);\r
+            return -1;\r
+            break;\r
+    }\r
+\r
+    com_fn(expandedDataInput, &compressedDataKern);\r
+    response->len = ((BlockFloatCompanderBFW::k_numRE/16*4*expandedDataInput.iqWidth)+1)*BlockFloatCompanderBFW::k_numRB;\r
+\r
+    return 0;\r
+}\r
+\r
+/** callback function type for Symbol packet */\r
+typedef void (*xran_bfp_decompress_fn)(const BlockFloatCompander::CompressedData& dataIn, BlockFloatCompander::ExpandedData* dataOut);\r
+\r
+\r
+int32_t\r
+xranlib_decompress_avx512(const struct xranlib_decompress_request *request,\r
+    struct xranlib_decompress_response *response)\r
+{\r
+\r
+    BlockFloatCompander::CompressedData compressedDataInput;\r
+    BlockFloatCompander::ExpandedData expandedDataOut;\r
+\r
+    xran_bfp_decompress_fn decom_fn = NULL;\r
+    int16_t numRBs = request->numRBs;\r
+    int16_t len = 0;\r
+\r
+    switch (request->iqWidth){\r
+        case 8:\r
+            compressedDataInput.iqWidth = 8;\r
+            decom_fn = BlockFloatCompander::BlockFloatExpand_8b_AVX512;\r
+            break;\r
+        case 9:\r
+            compressedDataInput.iqWidth = 9;\r
+            decom_fn = BlockFloatCompander::BlockFloatExpand_9b_AVX512;\r
+            break;\r
+        case 10:\r
+            compressedDataInput.iqWidth = 10;\r
+            decom_fn = BlockFloatCompander::BlockFloatExpand_10b_AVX512;\r
+            break;\r
+        case 12:\r
+            compressedDataInput.iqWidth = 12;\r
+            decom_fn = BlockFloatCompander::BlockFloatExpand_12b_AVX512;\r
+            break;\r
+        default:\r
+            compressedDataInput.iqWidth = request->iqWidth;\r
+            decom_fn = BlockFloatCompander::BlockFloatExpand_Basic;\r
+            break;\r
+    }\r
+\r
+    for (int16_t block_idx = 0;\r
+        block_idx < RB_NUM_ROUNDUP(numRBs)/BlockFloatCompander::k_numRB;\r
+        block_idx++) {\r
+\r
+        compressedDataInput.dataCompressed = (uint8_t*)&request->data_in[block_idx*(((3 * compressedDataInput.iqWidth ) + 1) * BlockFloatCompander::k_numRB)];\r
+        expandedDataOut.dataExpanded = &response->data_out[len];\r
+\r
+        decom_fn(compressedDataInput, &expandedDataOut);\r
+        len  += std::min((int16_t)BlockFloatCompander::k_numSampsExpanded, (int16_t)(numRBs*BlockFloatCompander::k_numREReal));\r
+    }\r
+\r
+    response->len = numRBs * BlockFloatCompander::k_numREReal* sizeof(int16_t);\r
+\r
+    return 0;\r
+}\r