Create script to extract 3GPP yang modules 75/1075/1
authordemx8as6 <martin.skorupski@highstreet-technologies.com>
Sat, 5 Oct 2019 14:56:05 +0000 (16:56 +0200)
committerdemx8as6 <martin.skorupski@highstreet-technologies.com>
Sat, 5 Oct 2019 14:56:50 +0000 (16:56 +0200)
3GPP publishes yang modules within it specification in word format.
A procedure extracts such yang modules from documents.
Please see related README.md

IssueID: OAM-24
Change-Id: I073da7adc4b5fedb872d74493ca912a1eefb48b7
Signed-off-by: demx8as6 <martin.skorupski@highstreet-technologies.com>
.gitignore [new file with mode: 0644]
data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/README.md [new file with mode: 0644]
data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-inet-types@2010-09-24.yang [new file with mode: 0644]
data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-inet-types@2013-07-15.yang [new file with mode: 0644]
data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-yang-types.yang [new file with mode: 0644]
data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-yang-types@2013-05-16.yang [new file with mode: 0644]
data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/src/js/extractYang.js [new file with mode: 0644]

diff --git a/.gitignore b/.gitignore
new file mode 100644 (file)
index 0000000..0a5b41e
--- /dev/null
@@ -0,0 +1,19 @@
+##############################################################################
+#
+# Copyright 2019 highstreet technologies GmbH and others...
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/src/resources/*
+target
diff --git a/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/README.md b/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/README.md
new file mode 100644 (file)
index 0000000..50a1351
--- /dev/null
@@ -0,0 +1,50 @@
+# 3gpp-ts-28.541
+
+A node.js script to extract yang modules from 3GPP TS 28.541.
+
+## Prerequisits
+
+### node.js
+
+https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu/
+
+```
+$ node --version
+v10.16.3
+```
+
+### pyang
+
+https://anukulverma.wordpress.com/2016/03/26/pyang-installation/
+
+```
+$ pyang --version
+pyang 2.0.1
+```
+
+
+## Usage
+
+Download latest version from [3GPP Specifications](https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3400).
+
+```
+$ wget http://www.3gpp.org/ftp//Specs/archive/28_series/28.541/28541-g20.zip --output-document=./src/resources/28541-g20.zip
+```
+
+Extract the zip file.
+
+```
+$ unzip ./src/resources/*.zip -d ./src/resources/
+```
+
+The word document (*.doc) must be converted to a text fromat. Please use Office Libre or MS Word for manual converstion, and then use the node.js script to extract the yang modules from the text file. The last parameter is the relative path to the text file. 
+
+```
+$ node ./src/js/extractYang.js src/resources/v16.2.0.txt 
+```
+
+Verifiy the extracted yang modules with pyang.
+
+```
+$ pyang --strict --path ./import/ ./target/*.yang
+```
\ No newline at end of file
diff --git a/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-inet-types@2010-09-24.yang b/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-inet-types@2010-09-24.yang
new file mode 100644 (file)
index 0000000..a9fc2c8
--- /dev/null
@@ -0,0 +1,418 @@
+module ietf-inet-types {
+
+   namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
+   prefix "inet";
+
+   organization
+    "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
+
+   contact
+    "WG Web:   <http://tools.ietf.org/wg/netmod/>
+     WG List:  <mailto:netmod@ietf.org>
+
+     WG Chair: David Partain
+               <mailto:david.partain@ericsson.com>
+
+     WG Chair: David Kessens
+               <mailto:david.kessens@nsn.com>
+
+     Editor:   Juergen Schoenwaelder
+               <mailto:j.schoenwaelder@jacobs-university.de>";
+
+   description
+    "This module contains a collection of generally useful derived
+     YANG data types for Internet addresses and related things.
+
+     Copyright (c) 2010 IETF Trust and the persons identified as
+     authors of the code.  All rights reserved.
+
+     Redistribution and use in source and binary forms, with or without
+     modification, is permitted pursuant to, and subject to the license
+     terms contained in, the Simplified BSD License set forth in Section
+     4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
+     (http://trustee.ietf.org/license-info).
+
+     This version of this YANG module is part of RFC 6021; see
+     the RFC itself for full legal notices.";
+
+   revision 2010-09-24 {
+     description
+      "Initial revision.";
+     reference
+      "RFC 6021: Common YANG Data Types";
+   }
+
+   /*** collection of protocol field related types ***/
+
+   typedef ip-version {
+     type enumeration {
+       enum unknown {
+         value "0";
+         description
+          "An unknown or unspecified version of the Internet protocol.";
+       }
+       enum ipv4 {
+         value "1";
+         description
+          "The IPv4 protocol as defined in RFC 791.";
+       }
+       enum ipv6 {
+         value "2";
+         description
+          "The IPv6 protocol as defined in RFC 2460.";
+       }
+     }
+     description
+      "This value represents the version of the IP protocol.
+
+       In the value set and its semantics, this type is equivalent
+       to the InetVersion textual convention of the SMIv2.";
+     reference
+      "RFC  791: Internet Protocol
+       RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
+       RFC 4001: Textual Conventions for Internet Network Addresses";
+   }
+
+   typedef dscp {
+     type uint8 {
+       range "0..63";
+     }
+     description
+      "The dscp type represents a Differentiated Services Code-Point
+       that may be used for marking packets in a traffic stream.
+
+       In the value set and its semantics, this type is equivalent
+       to the Dscp textual convention of the SMIv2.";
+     reference
+      "RFC 3289: Management Information Base for the Differentiated
+                 Services Architecture
+       RFC 2474: Definition of the Differentiated Services Field
+                 (DS Field) in the IPv4 and IPv6 Headers
+       RFC 2780: IANA Allocation Guidelines For Values In
+                 the Internet Protocol and Related Headers";
+   }
+
+   typedef ipv6-flow-label {
+     type uint32 {
+       range "0..1048575";
+     }
+     description
+      "The flow-label type represents flow identifier or Flow Label
+       in an IPv6 packet header that may be used to discriminate
+       traffic flows.
+
+       In the value set and its semantics, this type is equivalent
+       to the IPv6FlowLabel textual convention of the SMIv2.";
+     reference
+      "RFC 3595: Textual Conventions for IPv6 Flow Label
+       RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
+   }
+
+   typedef port-number {
+     type uint16 {
+       range "0..65535";
+     }
+     description
+      "The port-number type represents a 16-bit port number of an
+       Internet transport layer protocol such as UDP, TCP, DCCP, or
+       SCTP.  Port numbers are assigned by IANA.  A current list of
+       all assignments is available from <http://www.iana.org/>.
+
+       Note that the port number value zero is reserved by IANA.  In
+       situations where the value zero does not make sense, it can
+       be excluded by subtyping the port-number type.
+
+       In the value set and its semantics, this type is equivalent
+       to the InetPortNumber textual convention of the SMIv2.";
+     reference
+      "RFC  768: User Datagram Protocol
+       RFC  793: Transmission Control Protocol
+       RFC 4960: Stream Control Transmission Protocol
+       RFC 4340: Datagram Congestion Control Protocol (DCCP)
+       RFC 4001: Textual Conventions for Internet Network Addresses";
+   }
+
+   /*** collection of autonomous system related types ***/
+
+   typedef as-number {
+     type uint32;
+     description
+      "The as-number type represents autonomous system numbers
+       which identify an Autonomous System (AS).  An AS is a set
+       of routers under a single technical administration, using
+       an interior gateway protocol and common metrics to route
+       packets within the AS, and using an exterior gateway
+       protocol to route packets to other ASs'.  IANA maintains
+       the AS number space and has delegated large parts to the
+       regional registries.
+
+       Autonomous system numbers were originally limited to 16
+       bits.  BGP extensions have enlarged the autonomous system
+       number space to 32 bits.  This type therefore uses an uint32
+       base type without a range restriction in order to support
+       a larger autonomous system number space.
+
+       In the value set and its semantics, this type is equivalent
+       to the InetAutonomousSystemNumber textual convention of
+       the SMIv2.";
+     reference
+      "RFC 1930: Guidelines for creation, selection, and registration
+                 of an Autonomous System (AS)
+       RFC 4271: A Border Gateway Protocol 4 (BGP-4)
+       RFC 4893: BGP Support for Four-octet AS Number Space
+       RFC 4001: Textual Conventions for Internet Network Addresses";
+   }
+
+   /*** collection of IP address and hostname related types ***/
+
+   typedef ip-address {
+     type union {
+       type inet:ipv4-address;
+       type inet:ipv6-address;
+     }
+     description
+      "The ip-address type represents an IP address and is IP
+       version neutral.  The format of the textual representations
+       implies the IP version.";
+   }
+
+   typedef ipv4-address {
+     type string {
+       pattern
+         '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+       +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+       + '(%[\p{N}\p{L}]+)?';
+     }
+     description
+       "The ipv4-address type represents an IPv4 address in
+        dotted-quad notation.  The IPv4 address may include a zone
+        index, separated by a % sign.
+
+        The zone index is used to disambiguate identical address
+        values.  For link-local addresses, the zone index will
+        typically be the interface index number or the name of an
+        interface.  If the zone index is not present, the default
+        zone of the device will be used.
+
+        The canonical format for the zone index is the numerical
+        format";
+   }
+
+   typedef ipv6-address {
+     type string {
+       pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+             + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+             + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+             + '(%[\p{N}\p{L}]+)?';
+       pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+             + '(%.+)?';
+     }
+     description
+      "The ipv6-address type represents an IPv6 address in full,
+       mixed, shortened, and shortened-mixed notation.  The IPv6
+       address may include a zone index, separated by a % sign.
+
+       The zone index is used to disambiguate identical address
+       values.  For link-local addresses, the zone index will
+       typically be the interface index number or the name of an
+       interface.  If the zone index is not present, the default
+       zone of the device will be used.
+
+       The canonical format of IPv6 addresses uses the compressed
+       format described in RFC 4291, Section 2.2, item 2 with the
+       following additional rules: the :: substitution must be
+       applied to the longest sequence of all-zero 16-bit chunks
+       in an IPv6 address.  If there is a tie, the first sequence
+       of all-zero 16-bit chunks is replaced by ::.  Single
+       all-zero 16-bit chunks are not compressed.  The canonical
+       format uses lowercase characters and leading zeros are
+       not allowed.  The canonical format for the zone index is
+       the numerical format as described in RFC 4007, Section
+       11.2.";
+     reference
+      "RFC 4291: IP Version 6 Addressing Architecture
+       RFC 4007: IPv6 Scoped Address Architecture
+       RFC 5952: A Recommendation for IPv6 Address Text Representation";
+   }
+
+   typedef ip-prefix {
+     type union {
+       type inet:ipv4-prefix;
+       type inet:ipv6-prefix;
+     }
+     description
+      "The ip-prefix type represents an IP prefix and is IP
+       version neutral.  The format of the textual representations
+       implies the IP version.";
+   }
+
+   typedef ipv4-prefix {
+     type string {
+       pattern
+          '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+        +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+        + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
+     }
+     description
+      "The ipv4-prefix type represents an IPv4 address prefix.
+       The prefix length is given by the number following the
+       slash character and must be less than or equal to 32.
+
+       A prefix length value of n corresponds to an IP address
+       mask that has n contiguous 1-bits from the most
+       significant bit (MSB) and all other bits set to 0.
+
+       The canonical format of an IPv4 prefix has all bits of
+       the IPv4 address set to zero that are not part of the
+       IPv4 prefix.";
+   }
+
+   typedef ipv6-prefix {
+     type string {
+       pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+             + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+             + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+             + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
+       pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+             + '(/.+)';
+     }
+     description
+      "The ipv6-prefix type represents an IPv6 address prefix.
+       The prefix length is given by the number following the
+       slash character and must be less than or equal 128.
+
+       A prefix length value of n corresponds to an IP address
+       mask that has n contiguous 1-bits from the most
+       significant bit (MSB) and all other bits set to 0.
+
+       The IPv6 address should have all bits that do not belong
+       to the prefix set to zero.
+
+       The canonical format of an IPv6 prefix has all bits of
+       the IPv6 address set to zero that are not part of the
+       IPv6 prefix.  Furthermore, IPv6 address is represented
+       in the compressed format described in RFC 4291, Section
+       2.2, item 2 with the following additional rules: the ::
+       substitution must be applied to the longest sequence of
+       all-zero 16-bit chunks in an IPv6 address.  If there is
+       a tie, the first sequence of all-zero 16-bit chunks is
+       replaced by ::.  Single all-zero 16-bit chunks are not
+       compressed.  The canonical format uses lowercase
+       characters and leading zeros are not allowed.";
+     reference
+      "RFC 4291: IP Version 6 Addressing Architecture";
+   }
+
+   /*** collection of domain name and URI types ***/
+
+   typedef domain-name {
+     type string {
+       pattern '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
+            +  '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
+            +  '|\.';
+       length "1..253";
+     }
+     description
+      "The domain-name type represents a DNS domain name.  The
+       name SHOULD be fully qualified whenever possible.
+
+       Internet domain names are only loosely specified.  Section
+       3.5 of RFC 1034 recommends a syntax (modified in Section
+       2.1 of RFC 1123).  The pattern above is intended to allow
+       for current practice in domain name use, and some possible
+       future expansion.  It is designed to hold various types of
+       domain names, including names used for A or AAAA records
+       (host names) and other records, such as SRV records.  Note
+       that Internet host names have a stricter syntax (described
+       in RFC 952) than the DNS recommendations in RFCs 1034 and
+       1123, and that systems that want to store host names in
+       schema nodes using the domain-name type are recommended to
+       adhere to this stricter standard to ensure interoperability.
+
+       The encoding of DNS names in the DNS protocol is limited
+       to 255 characters.  Since the encoding consists of labels
+       prefixed by a length bytes and there is a trailing NULL
+       byte, only 253 characters can appear in the textual dotted
+       notation.
+
+       The description clause of schema nodes using the domain-name
+       type MUST describe when and how these names are resolved to
+       IP addresses.  Note that the resolution of a domain-name value
+       may require to query multiple DNS records (e.g., A for IPv4
+       and AAAA for IPv6).  The order of the resolution process and
+       which DNS record takes precedence can either be defined
+       explicitely or it may depend on the configuration of the
+       resolver.
+
+       Domain-name values use the US-ASCII encoding.  Their canonical
+       format uses lowercase US-ASCII characters.  Internationalized
+       domain names MUST be encoded in punycode as described in RFC
+       3492";
+     reference
+      "RFC  952: DoD Internet Host Table Specification
+       RFC 1034: Domain Names - Concepts and Facilities
+       RFC 1123: Requirements for Internet Hosts -- Application
+                 and Support
+       RFC 2782: A DNS RR for specifying the location of services
+                 (DNS SRV)
+       RFC 3492: Punycode: A Bootstring encoding of Unicode for
+                 Internationalized Domain Names in Applications
+                 (IDNA)
+       RFC 5891: Internationalizing Domain Names in Applications
+                 (IDNA): Protocol";
+   }
+
+   typedef host {
+     type union {
+       type inet:ip-address;
+       type inet:domain-name;
+     }
+     description
+      "The host type represents either an IP address or a DNS
+       domain name.";
+   }
+
+   typedef uri {
+     type string;
+     description
+      "The uri type represents a Uniform Resource Identifier
+       (URI) as defined by STD 66.
+
+       Objects using the uri type MUST be in US-ASCII encoding,
+       and MUST be normalized as described by RFC 3986 Sections
+       6.2.1, 6.2.2.1, and 6.2.2.2.  All unnecessary
+       percent-encoding is removed, and all case-insensitive
+       characters are set to lowercase except for hexadecimal
+       digits, which are normalized to uppercase as described in
+       Section 6.2.2.1.
+
+       The purpose of this normalization is to help provide
+       unique URIs.  Note that this normalization is not
+       sufficient to provide uniqueness.  Two URIs that are
+       textually distinct after this normalization may still be
+       equivalent.
+
+       Objects using the uri type may restrict the schemes that
+       they permit.  For example, 'data:' and 'urn:' schemes
+       might not be appropriate.
+
+       A zero-length URI is not a valid URI.  This can be used to
+       express 'URI absent' where required.
+
+       In the value set and its semantics, this type is equivalent
+       to the Uri SMIv2 textual convention defined in RFC 5017.";
+     reference
+      "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
+       RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
+                 Group: Uniform Resource Identifiers (URIs), URLs,
+                 and Uniform Resource Names (URNs): Clarifications
+                 and Recommendations
+       RFC 5017: MIB Textual Conventions for Uniform Resource
+                 Identifiers (URIs)";
+   }
+
+ }
\ No newline at end of file
diff --git a/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-inet-types@2013-07-15.yang b/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-inet-types@2013-07-15.yang
new file mode 100644 (file)
index 0000000..5c6f139
--- /dev/null
@@ -0,0 +1,457 @@
+module ietf-inet-types {
+
+  namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
+  prefix "inet";
+
+  organization
+   "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
+
+  contact
+   "WG Web:   <http://tools.ietf.org/wg/netmod/>
+    WG List:  <mailto:netmod@ietf.org>
+
+    WG Chair: David Kessens
+              <mailto:david.kessens@nsn.com>
+
+    WG Chair: Juergen Schoenwaelder
+              <mailto:j.schoenwaelder@jacobs-university.de>
+
+    Editor:   Juergen Schoenwaelder
+              <mailto:j.schoenwaelder@jacobs-university.de>";
+
+  description
+   "This module contains a collection of generally useful derived
+    YANG data types for Internet addresses and related things.
+
+    Copyright (c) 2013 IETF Trust and the persons identified as
+    authors of the code.  All rights reserved.
+
+    Redistribution and use in source and binary forms, with or
+    without modification, is permitted pursuant to, and subject
+    to the license terms contained in, the Simplified BSD License
+    set forth in Section 4.c of the IETF Trust's Legal Provisions
+    Relating to IETF Documents
+    (http://trustee.ietf.org/license-info).
+
+    This version of this YANG module is part of RFC 6991; see
+    the RFC itself for full legal notices.";
+
+  revision 2013-07-15 {
+    description
+     "This revision adds the following new data types:
+      - ip-address-no-zone
+      - ipv4-address-no-zone
+      - ipv6-address-no-zone";
+    reference
+     "RFC 6991: Common YANG Data Types";
+  }
+
+  revision 2010-09-24 {
+    description
+     "Initial revision.";
+    reference
+     "RFC 6021: Common YANG Data Types";
+  }
+
+  /*** collection of types related to protocol fields ***/
+
+  typedef ip-version {
+    type enumeration {
+      enum unknown {
+        value "0";
+        description
+         "An unknown or unspecified version of the Internet
+          protocol.";
+      }
+      enum ipv4 {
+        value "1";
+        description
+         "The IPv4 protocol as defined in RFC 791.";
+      }
+      enum ipv6 {
+        value "2";
+        description
+         "The IPv6 protocol as defined in RFC 2460.";
+      }
+    }
+    description
+     "This value represents the version of the IP protocol.
+
+      In the value set and its semantics, this type is equivalent
+      to the InetVersion textual convention of the SMIv2.";
+    reference
+     "RFC  791: Internet Protocol
+      RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
+      RFC 4001: Textual Conventions for Internet Network Addresses";
+  }
+
+  typedef dscp {
+    type uint8 {
+      range "0..63";
+    }
+    description
+     "The dscp type represents a Differentiated Services Code Point
+      that may be used for marking packets in a traffic stream.
+      In the value set and its semantics, this type is equivalent
+      to the Dscp textual convention of the SMIv2.";
+    reference
+     "RFC 3289: Management Information Base for the Differentiated
+                Services Architecture
+      RFC 2474: Definition of the Differentiated Services Field
+                (DS Field) in the IPv4 and IPv6 Headers
+      RFC 2780: IANA Allocation Guidelines For Values In
+                the Internet Protocol and Related Headers";
+  }
+
+  typedef ipv6-flow-label {
+    type uint32 {
+      range "0..1048575";
+    }
+    description
+     "The ipv6-flow-label type represents the flow identifier or Flow
+      Label in an IPv6 packet header that may be used to
+      discriminate traffic flows.
+
+      In the value set and its semantics, this type is equivalent
+      to the IPv6FlowLabel textual convention of the SMIv2.";
+    reference
+     "RFC 3595: Textual Conventions for IPv6 Flow Label
+      RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
+  }
+
+  typedef port-number {
+    type uint16 {
+      range "0..65535";
+    }
+    description
+     "The port-number type represents a 16-bit port number of an
+      Internet transport-layer protocol such as UDP, TCP, DCCP, or
+      SCTP.  Port numbers are assigned by IANA.  A current list of
+      all assignments is available from <http://www.iana.org/>.
+
+      Note that the port number value zero is reserved by IANA.  In
+      situations where the value zero does not make sense, it can
+      be excluded by subtyping the port-number type.
+      In the value set and its semantics, this type is equivalent
+      to the InetPortNumber textual convention of the SMIv2.";
+    reference
+     "RFC  768: User Datagram Protocol
+      RFC  793: Transmission Control Protocol
+      RFC 4960: Stream Control Transmission Protocol
+      RFC 4340: Datagram Congestion Control Protocol (DCCP)
+      RFC 4001: Textual Conventions for Internet Network Addresses";
+  }
+
+  /*** collection of types related to autonomous systems ***/
+
+  typedef as-number {
+    type uint32;
+    description
+     "The as-number type represents autonomous system numbers
+      which identify an Autonomous System (AS).  An AS is a set
+      of routers under a single technical administration, using
+      an interior gateway protocol and common metrics to route
+      packets within the AS, and using an exterior gateway
+      protocol to route packets to other ASes.  IANA maintains
+      the AS number space and has delegated large parts to the
+      regional registries.
+
+      Autonomous system numbers were originally limited to 16
+      bits.  BGP extensions have enlarged the autonomous system
+      number space to 32 bits.  This type therefore uses an uint32
+      base type without a range restriction in order to support
+      a larger autonomous system number space.
+
+      In the value set and its semantics, this type is equivalent
+      to the InetAutonomousSystemNumber textual convention of
+      the SMIv2.";
+    reference
+     "RFC 1930: Guidelines for creation, selection, and registration
+                of an Autonomous System (AS)
+      RFC 4271: A Border Gateway Protocol 4 (BGP-4)
+      RFC 4001: Textual Conventions for Internet Network Addresses
+      RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
+                Number Space";
+  }
+
+  /*** collection of types related to IP addresses and hostnames ***/
+
+  typedef ip-address {
+    type union {
+      type inet:ipv4-address;
+      type inet:ipv6-address;
+    }
+    description
+     "The ip-address type represents an IP address and is IP
+      version neutral.  The format of the textual representation
+      implies the IP version.  This type supports scoped addresses
+      by allowing zone identifiers in the address format.";
+    reference
+     "RFC 4007: IPv6 Scoped Address Architecture";
+  }
+
+  typedef ipv4-address {
+    type string {
+      pattern
+        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+      +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+      + '(%[\p{N}\p{L}]+)?';
+    }
+    description
+      "The ipv4-address type represents an IPv4 address in
+       dotted-quad notation.  The IPv4 address may include a zone
+       index, separated by a % sign.
+
+       The zone index is used to disambiguate identical address
+       values.  For link-local addresses, the zone index will
+       typically be the interface index number or the name of an
+       interface.  If the zone index is not present, the default
+       zone of the device will be used.
+
+       The canonical format for the zone index is the numerical
+       format";
+  }
+
+  typedef ipv6-address {
+    type string {
+      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+            + '(%[\p{N}\p{L}]+)?';
+      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+            + '(%.+)?';
+    }
+    description
+     "The ipv6-address type represents an IPv6 address in full,
+      mixed, shortened, and shortened-mixed notation.  The IPv6
+      address may include a zone index, separated by a % sign.
+
+      The zone index is used to disambiguate identical address
+      values.  For link-local addresses, the zone index will
+      typically be the interface index number or the name of an
+      interface.  If the zone index is not present, the default
+      zone of the device will be used.
+
+      The canonical format of IPv6 addresses uses the textual
+      representation defined in Section 4 of RFC 5952.  The
+      canonical format for the zone index is the numerical
+      format as described in Section 11.2 of RFC 4007.";
+    reference
+     "RFC 4291: IP Version 6 Addressing Architecture
+      RFC 4007: IPv6 Scoped Address Architecture
+      RFC 5952: A Recommendation for IPv6 Address Text
+                Representation";
+  }
+
+  typedef ip-address-no-zone {
+    type union {
+      type inet:ipv4-address-no-zone;
+      type inet:ipv6-address-no-zone;
+    }
+    description
+     "The ip-address-no-zone type represents an IP address and is
+      IP version neutral.  The format of the textual representation
+      implies the IP version.  This type does not support scoped
+      addresses since it does not allow zone identifiers in the
+      address format.";
+    reference
+     "RFC 4007: IPv6 Scoped Address Architecture";
+  }
+
+  typedef ipv4-address-no-zone {
+    type inet:ipv4-address {
+      pattern '[0-9\.]*';
+    }
+    description
+      "An IPv4 address without a zone index.  This type, derived from
+       ipv4-address, may be used in situations where the zone is
+       known from the context and hence no zone index is needed.";
+  }
+
+  typedef ipv6-address-no-zone {
+    type inet:ipv6-address {
+      pattern '[0-9a-fA-F:\.]*';
+    }
+    description
+      "An IPv6 address without a zone index.  This type, derived from
+       ipv6-address, may be used in situations where the zone is
+       known from the context and hence no zone index is needed.";
+    reference
+     "RFC 4291: IP Version 6 Addressing Architecture
+      RFC 4007: IPv6 Scoped Address Architecture
+      RFC 5952: A Recommendation for IPv6 Address Text
+                Representation";
+  }
+
+  typedef ip-prefix {
+    type union {
+      type inet:ipv4-prefix;
+      type inet:ipv6-prefix;
+    }
+    description
+     "The ip-prefix type represents an IP prefix and is IP
+      version neutral.  The format of the textual representations
+      implies the IP version.";
+  }
+
+  typedef ipv4-prefix {
+    type string {
+      pattern
+         '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+       +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+       + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
+    }
+    description
+     "The ipv4-prefix type represents an IPv4 address prefix.
+      The prefix length is given by the number following the
+      slash character and must be less than or equal to 32.
+
+      A prefix length value of n corresponds to an IP address
+      mask that has n contiguous 1-bits from the most
+      significant bit (MSB) and all other bits set to 0.
+
+      The canonical format of an IPv4 prefix has all bits of
+      the IPv4 address set to zero that are not part of the
+      IPv4 prefix.";
+  }
+
+  typedef ipv6-prefix {
+    type string {
+      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+            + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
+      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+            + '(/.+)';
+    }
+    description
+     "The ipv6-prefix type represents an IPv6 address prefix.
+      The prefix length is given by the number following the
+      slash character and must be less than or equal to 128.
+
+      A prefix length value of n corresponds to an IP address
+      mask that has n contiguous 1-bits from the most
+      significant bit (MSB) and all other bits set to 0.
+
+      The IPv6 address should have all bits that do not belong
+      to the prefix set to zero.
+
+      The canonical format of an IPv6 prefix has all bits of
+      the IPv6 address set to zero that are not part of the
+      IPv6 prefix.  Furthermore, the IPv6 address is represented
+      as defined in Section 4 of RFC 5952.";
+    reference
+     "RFC 5952: A Recommendation for IPv6 Address Text
+                Representation";
+  }
+
+  /*** collection of domain name and URI types ***/
+
+  typedef domain-name {
+    type string {
+      pattern
+        '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
+      + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
+      + '|\.';
+      length "1..253";
+    }
+    description
+     "The domain-name type represents a DNS domain name.  The
+      name SHOULD be fully qualified whenever possible.
+
+      Internet domain names are only loosely specified.  Section
+      3.5 of RFC 1034 recommends a syntax (modified in Section
+      2.1 of RFC 1123).  The pattern above is intended to allow
+      for current practice in domain name use, and some possible
+      future expansion.  It is designed to hold various types of
+      domain names, including names used for A or AAAA records
+      (host names) and other records, such as SRV records.  Note
+      that Internet host names have a stricter syntax (described
+      in RFC 952) than the DNS recommendations in RFCs 1034 and
+      1123, and that systems that want to store host names in
+      schema nodes using the domain-name type are recommended to
+      adhere to this stricter standard to ensure interoperability.
+
+      The encoding of DNS names in the DNS protocol is limited
+      to 255 characters.  Since the encoding consists of labels
+      prefixed by a length bytes and there is a trailing NULL
+      byte, only 253 characters can appear in the textual dotted
+      notation.
+
+      The description clause of schema nodes using the domain-name
+      type MUST describe when and how these names are resolved to
+      IP addresses.  Note that the resolution of a domain-name value
+      may require to query multiple DNS records (e.g., A for IPv4
+      and AAAA for IPv6).  The order of the resolution process and
+      which DNS record takes precedence can either be defined
+      explicitly or may depend on the configuration of the
+      resolver.
+
+      Domain-name values use the US-ASCII encoding.  Their canonical
+      format uses lowercase US-ASCII characters.  Internationalized
+      domain names MUST be A-labels as per RFC 5890.";
+    reference
+     "RFC  952: DoD Internet Host Table Specification
+      RFC 1034: Domain Names - Concepts and Facilities
+      RFC 1123: Requirements for Internet Hosts -- Application
+                and Support
+      RFC 2782: A DNS RR for specifying the location of services
+                (DNS SRV)
+      RFC 5890: Internationalized Domain Names in Applications
+                (IDNA): Definitions and Document Framework";
+  }
+
+  typedef host {
+    type union {
+      type inet:ip-address;
+      type inet:domain-name;
+    }
+    description
+     "The host type represents either an IP address or a DNS
+      domain name.";
+  }
+
+  typedef uri {
+    type string;
+    description
+     "The uri type represents a Uniform Resource Identifier
+      (URI) as defined by STD 66.
+
+      Objects using the uri type MUST be in US-ASCII encoding,
+      and MUST be normalized as described by RFC 3986 Sections
+      6.2.1, 6.2.2.1, and 6.2.2.2.  All unnecessary
+      percent-encoding is removed, and all case-insensitive
+      characters are set to lowercase except for hexadecimal
+      digits, which are normalized to uppercase as described in
+      Section 6.2.2.1.
+
+      The purpose of this normalization is to help provide
+      unique URIs.  Note that this normalization is not
+      sufficient to provide uniqueness.  Two URIs that are
+      textually distinct after this normalization may still be
+      equivalent.
+
+      Objects using the uri type may restrict the schemes that
+      they permit.  For example, 'data:' and 'urn:' schemes
+      might not be appropriate.
+
+      A zero-length URI is not a valid URI.  This can be used to
+      express 'URI absent' where required.
+
+      In the value set and its semantics, this type is equivalent
+      to the Uri SMIv2 textual convention defined in RFC 5017.";
+    reference
+     "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
+      RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
+                Group: Uniform Resource Identifiers (URIs), URLs,
+                and Uniform Resource Names (URNs): Clarifications
+                and Recommendations
+      RFC 5017: MIB Textual Conventions for Uniform Resource
+                Identifiers (URIs)";
+  }
+
+}
diff --git a/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-yang-types.yang b/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-yang-types.yang
new file mode 100644 (file)
index 0000000..c3f952c
--- /dev/null
@@ -0,0 +1,417 @@
+ module ietf-yang-types {
+
+   namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
+   prefix "yang";
+
+   organization
+    "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
+
+   contact
+    "WG Web:   <http://tools.ietf.org/wg/netmod/>
+     WG List:  <mailto:netmod@ietf.org>
+
+     WG Chair: David Partain
+               <mailto:david.partain@ericsson.com>
+
+     WG Chair: David Kessens
+               <mailto:david.kessens@nsn.com>
+
+     Editor:   Juergen Schoenwaelder
+               <mailto:j.schoenwaelder@jacobs-university.de>";
+
+   description
+    "This module contains a collection of generally useful derived
+     YANG data types.
+
+     Copyright (c) 2010 IETF Trust and the persons identified as
+     authors of the code.  All rights reserved.
+
+     Redistribution and use in source and binary forms, with or without
+     modification, is permitted pursuant to, and subject to the license
+     terms contained in, the Simplified BSD License set forth in Section
+     4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
+     (http://trustee.ietf.org/license-info).
+
+     This version of this YANG module is part of RFC 6021; see
+     the RFC itself for full legal notices.";
+
+   revision 2010-09-24 {
+     description
+      "Initial revision.";
+     reference
+      "RFC 6021: Common YANG Data Types";
+   }
+
+   /*** collection of counter and gauge types ***/
+
+   typedef counter32 {
+     type uint32;
+     description
+      "The counter32 type represents a non-negative integer
+       that monotonically increases until it reaches a
+       maximum value of 2^32-1 (4294967295 decimal), when it
+       wraps around and starts increasing again from zero.
+
+       Counters have no defined 'initial' value, and thus, a
+       single value of a counter has (in general) no information
+       content.  Discontinuities in the monotonically increasing
+       value normally occur at re-initialization of the
+       management system, and at other times as specified in the
+       description of a schema node using this type.  If such
+       other times can occur, for example, the creation of
+       a schema node of type counter32 at times other than
+       re-initialization, then a corresponding schema node
+       should be defined, with an appropriate type, to indicate
+       the last discontinuity.
+
+       The counter32 type should not be used for configuration
+       schema nodes.  A default statement SHOULD NOT be used in
+       combination with the type counter32.
+
+       In the value set and its semantics, this type is equivalent
+       to the Counter32 type of the SMIv2.";
+     reference
+      "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
+   }
+
+   typedef zero-based-counter32 {
+     type yang:counter32;
+     default "0";
+     description
+      "The zero-based-counter32 type represents a counter32
+       that has the defined 'initial' value zero.
+
+       A schema node of this type will be set to zero (0) on creation
+       and will thereafter increase monotonically until it reaches
+       a maximum value of 2^32-1 (4294967295 decimal), when it
+       wraps around and starts increasing again from zero.
+
+       Provided that an application discovers a new schema node
+       of this type within the minimum time to wrap, it can use the
+       'initial' value as a delta.  It is important for a management
+       station to be aware of this minimum time and the actual time
+       between polls, and to discard data if the actual time is too
+       long or there is no defined minimum time.
+
+       In the value set and its semantics, this type is equivalent
+       to the ZeroBasedCounter32 textual convention of the SMIv2.";
+     reference
+       "RFC 4502: Remote Network Monitoring Management Information
+                  Base Version 2";
+   }
+
+   typedef counter64 {
+     type uint64;
+     description
+      "The counter64 type represents a non-negative integer
+       that monotonically increases until it reaches a
+       maximum value of 2^64-1 (18446744073709551615 decimal),
+       when it wraps around and starts increasing again from zero.
+
+       Counters have no defined 'initial' value, and thus, a
+       single value of a counter has (in general) no information
+       content.  Discontinuities in the monotonically increasing
+       value normally occur at re-initialization of the
+       management system, and at other times as specified in the
+       description of a schema node using this type.  If such
+       other times can occur, for example, the creation of
+       a schema node of type counter64 at times other than
+       re-initialization, then a corresponding schema node
+       should be defined, with an appropriate type, to indicate
+       the last discontinuity.
+
+       The counter64 type should not be used for configuration
+       schema nodes.  A default statement SHOULD NOT be used in
+       combination with the type counter64.
+
+       In the value set and its semantics, this type is equivalent
+       to the Counter64 type of the SMIv2.";
+     reference
+      "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
+   }
+
+   typedef zero-based-counter64 {
+     type yang:counter64;
+     default "0";
+     description
+      "The zero-based-counter64 type represents a counter64 that
+       has the defined 'initial' value zero.
+
+       A schema node of this type will be set to zero (0) on creation
+       and will thereafter increase monotonically until it reaches
+       a maximum value of 2^64-1 (18446744073709551615 decimal),
+       when it wraps around and starts increasing again from zero.
+
+       Provided that an application discovers a new schema node
+       of this type within the minimum time to wrap, it can use the
+       'initial' value as a delta.  It is important for a management
+       station to be aware of this minimum time and the actual time
+       between polls, and to discard data if the actual time is too
+       long or there is no defined minimum time.
+
+       In the value set and its semantics, this type is equivalent
+       to the ZeroBasedCounter64 textual convention of the SMIv2.";
+     reference
+      "RFC 2856: Textual Conventions for Additional High Capacity
+                 Data Types";
+   }
+
+   typedef gauge32 {
+     type uint32;
+     description
+      "The gauge32 type represents a non-negative integer, which
+       may increase or decrease, but shall never exceed a maximum
+       value, nor fall below a minimum value.  The maximum value
+       cannot be greater than 2^32-1 (4294967295 decimal), and
+       the minimum value cannot be smaller than 0.  The value of
+       a gauge32 has its maximum value whenever the information
+       being modeled is greater than or equal to its maximum
+       value, and has its minimum value whenever the information
+       being modeled is smaller than or equal to its minimum value.
+       If the information being modeled subsequently decreases
+       below (increases above) the maximum (minimum) value, the
+       gauge32 also decreases (increases).
+
+       In the value set and its semantics, this type is equivalent
+       to the Gauge32 type of the SMIv2.";
+     reference
+      "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
+   }
+
+   typedef gauge64 {
+     type uint64;
+     description
+      "The gauge64 type represents a non-negative integer, which
+       may increase or decrease, but shall never exceed a maximum
+       value, nor fall below a minimum value.  The maximum value
+       cannot be greater than 2^64-1 (18446744073709551615), and
+       the minimum value cannot be smaller than 0.  The value of
+       a gauge64 has its maximum value whenever the information
+       being modeled is greater than or equal to its maximum
+       value, and has its minimum value whenever the information
+       being modeled is smaller than or equal to its minimum value.
+       If the information being modeled subsequently decreases
+       below (increases above) the maximum (minimum) value, the
+       gauge64 also decreases (increases).
+
+       In the value set and its semantics, this type is equivalent
+       to the CounterBasedGauge64 SMIv2 textual convention defined
+       in RFC 2856";
+     reference
+      "RFC 2856: Textual Conventions for Additional High Capacity
+                 Data Types";
+   }
+
+   /*** collection of identifier related types ***/
+
+   typedef object-identifier {
+     type string {
+       pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
+             + '(\.(0|([1-9]\d*)))*';
+     }
+     description
+      "The object-identifier type represents administratively
+       assigned names in a registration-hierarchical-name tree.
+
+       Values of this type are denoted as a sequence of numerical
+       non-negative sub-identifier values.  Each sub-identifier
+       value MUST NOT exceed 2^32-1 (4294967295).  Sub-identifiers
+       are separated by single dots and without any intermediate
+       whitespace.
+
+       The ASN.1 standard restricts the value space of the first
+       sub-identifier to 0, 1, or 2.  Furthermore, the value space
+       of the second sub-identifier is restricted to the range
+       0 to 39 if the first sub-identifier is 0 or 1.  Finally,
+       the ASN.1 standard requires that an object identifier
+       has always at least two sub-identifier.  The pattern
+       captures these restrictions.
+
+       Although the number of sub-identifiers is not limited,
+       module designers should realize that there may be
+       implementations that stick with the SMIv2 limit of 128
+       sub-identifiers.
+
+       This type is a superset of the SMIv2 OBJECT IDENTIFIER type
+       since it is not restricted to 128 sub-identifiers.  Hence,
+       this type SHOULD NOT be used to represent the SMIv2 OBJECT
+       IDENTIFIER type, the object-identifier-128 type SHOULD be
+       used instead.";
+     reference
+      "ISO9834-1: Information technology -- Open Systems
+       Interconnection -- Procedures for the operation of OSI
+       Registration Authorities: General procedures and top
+       arcs of the ASN.1 Object Identifier tree";
+   }
+
+
+
+
+   typedef object-identifier-128 {
+     type object-identifier {
+       pattern '\d*(\.\d*){1,127}';
+     }
+     description
+      "This type represents object-identifiers restricted to 128
+       sub-identifiers.
+
+       In the value set and its semantics, this type is equivalent
+       to the OBJECT IDENTIFIER type of the SMIv2.";
+     reference
+      "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
+   }
+
+    typedef yang-identifier {
+       type string {
+         length "1..max";
+         pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
+         pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
+       }
+       description
+         "A YANG identifier string as defined by the 'identifier'
+          rule in Section 12 of RFC 6020.  An identifier must
+          start with an alphabetic character or an underscore
+          followed by an arbitrary sequence of alphabetic or
+          numeric characters, underscores, hyphens, or dots.
+
+          A YANG identifier MUST NOT start with any possible
+          combination of the lowercase or uppercase character
+          sequence 'xml'.";
+       reference
+         "RFC 6020: YANG - A Data Modeling Language for the Network
+                    Configuration Protocol (NETCONF)";
+     }
+
+   /*** collection of date and time related types ***/
+
+   typedef date-and-time {
+     type string {
+       pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
+             + '(Z|[\+\-]\d{2}:\d{2})';
+     }
+     description
+      "The date-and-time type is a profile of the ISO 8601
+       standard for representation of dates and times using the
+       Gregorian calendar.  The profile is defined by the
+       date-time production in Section 5.6 of RFC 3339.
+
+       The date-and-time type is compatible with the dateTime XML
+       schema type with the following notable exceptions:
+
+       (a) The date-and-time type does not allow negative years.
+
+       (b) The date-and-time time-offset -00:00 indicates an unknown
+           time zone (see RFC 3339) while -00:00 and +00:00 and Z all
+           represent the same time zone in dateTime.
+
+       (c) The canonical format (see below) of data-and-time values
+           differs from the canonical format used by the dateTime XML
+           schema type, which requires all times to be in UTC using the
+           time-offset 'Z'.
+
+       This type is not equivalent to the DateAndTime textual
+       convention of the SMIv2 since RFC 3339 uses a different
+       separator between full-date and full-time and provides
+       higher resolution of time-secfrac.
+
+       The canonical format for date-and-time values with a known time
+       zone uses a numeric time zone offset that is calculated using
+       the device's configured known offset to UTC time.  A change of
+       the device's offset to UTC time will cause date-and-time values
+       to change accordingly.  Such changes might happen periodically
+       in case a server follows automatically daylight saving time
+       (DST) time zone offset changes.  The canonical format for
+       date-and-time values with an unknown time zone (usually referring
+       to the notion of local time) uses the time-offset -00:00.";
+     reference
+      "RFC 3339: Date and Time on the Internet: Timestamps
+       RFC 2579: Textual Conventions for SMIv2
+       XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
+   }
+
+   typedef timeticks {
+     type uint32;
+     description
+      "The timeticks type represents a non-negative integer that
+       represents the time, modulo 2^32 (4294967296 decimal), in
+       hundredths of a second between two epochs.  When a schema
+       node is defined that uses this type, the description of
+       the schema node identifies both of the reference epochs.
+
+       In the value set and its semantics, this type is equivalent
+       to the TimeTicks type of the SMIv2.";
+     reference
+      "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
+   }
+
+   typedef timestamp {
+     type yang:timeticks;
+     description
+      "The timestamp type represents the value of an associated
+       timeticks schema node at which a specific occurrence happened.
+       The specific occurrence must be defined in the description
+       of any schema node defined using this type.  When the specific
+       occurrence occurred prior to the last time the associated
+       timeticks attribute was zero, then the timestamp value is
+       zero.  Note that this requires all timestamp values to be
+       reset to zero when the value of the associated timeticks
+       attribute reaches 497+ days and wraps around to zero.
+
+       The associated timeticks schema node must be specified
+       in the description of any schema node using this type.
+
+       In the value set and its semantics, this type is equivalent
+       to the TimeStamp textual convention of the SMIv2.";
+     reference
+      "RFC 2579: Textual Conventions for SMIv2";
+   }
+
+   /*** collection of generic address types ***/
+
+   typedef phys-address {
+     type string {
+       pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
+     }
+     description
+      "Represents media- or physical-level addresses represented
+       as a sequence octets, each octet represented by two hexadecimal
+       numbers.  Octets are separated by colons.  The canonical
+       representation uses lowercase characters.
+
+       In the value set and its semantics, this type is equivalent
+       to the PhysAddress textual convention of the SMIv2.";
+     reference
+      "RFC 2579: Textual Conventions for SMIv2";
+   }
+
+   typedef mac-address {
+     type string {
+       pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
+     }
+     description
+      "The mac-address type represents an IEEE 802 MAC address.
+       The canonical representation uses lowercase characters.
+
+       In the value set and its semantics, this type is equivalent
+       to the MacAddress textual convention of the SMIv2.";
+     reference
+      "IEEE 802: IEEE Standard for Local and Metropolitan Area
+                 Networks: Overview and Architecture
+       RFC 2579: Textual Conventions for SMIv2";
+   }
+
+   /*** collection of XML specific types ***/
+
+   typedef xpath1.0 {
+     type string;
+     description
+      "This type represents an XPATH 1.0 expression.
+
+       When a schema node is defined that uses this type, the
+       description of the schema node MUST specify the XPath
+       context in which the XPath expression is evaluated.";
+     reference
+      "XPATH: XML Path Language (XPath) Version 1.0";
+   }
+
+ }
diff --git a/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-yang-types@2013-05-16.yang b/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/import/ietf-yang-types@2013-05-16.yang
new file mode 100644 (file)
index 0000000..6c82d9d
--- /dev/null
@@ -0,0 +1,471 @@
+module ietf-yang-types {
+
+  namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
+  prefix "yang";
+
+  organization
+   "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
+
+  contact
+   "WG Web:   <http://tools.ietf.org/wg/netmod/>
+    WG List:  <mailto:netmod@ietf.org>
+
+    WG Chair: David Kessens
+              <mailto:david.kessens@nsn.com>
+
+    WG Chair: Juergen Schoenwaelder
+              <mailto:j.schoenwaelder@jacobs-university.de>
+
+    Editor:   Juergen Schoenwaelder
+              <mailto:j.schoenwaelder@jacobs-university.de>";
+
+  description
+   "This module contains a collection of generally useful derived
+    YANG data types.
+
+    Copyright (c) 2013 IETF Trust and the persons identified as
+    authors of the code.  All rights reserved.
+
+    Redistribution and use in source and binary forms, with or
+    without modification, is permitted pursuant to, and subject
+    to the license terms contained in, the Simplified BSD License
+    set forth in Section 4.c of the IETF Trust's Legal Provisions
+    Relating to IETF Documents
+    (http://trustee.ietf.org/license-info).
+
+    This version of this YANG module is part of RFC XXXX; see
+    the RFC itself for full legal notices.";
+
+  revision 2013-05-16 {
+    description
+     "This revision adds the following new data types:
+      - yang-identifier
+      - hex-string
+      - uuid
+      - dotted-quad";
+    reference
+     "RFC XXXX: Common YANG Data Types";
+  }
+
+  revision 2010-09-24 {
+    description
+     "Initial revision.";
+    reference
+     "RFC 6021: Common YANG Data Types";
+  }
+
+  /*** collection of counter and gauge types ***/
+
+  typedef counter32 {
+    type uint32;
+    description
+     "The counter32 type represents a non-negative integer
+      that monotonically increases until it reaches a
+      maximum value of 2^32-1 (4294967295 decimal), when it
+      wraps around and starts increasing again from zero.
+
+      Counters have no defined 'initial' value, and thus, a
+      single value of a counter has (in general) no information
+      content.  Discontinuities in the monotonically increasing
+      value normally occur at re-initialization of the
+      management system, and at other times as specified in the
+      description of a schema node using this type.  If such
+      other times can occur, for example, the creation of
+      a schema node of type counter32 at times other than
+      re-initialization, then a corresponding schema node
+      should be defined, with an appropriate type, to indicate
+      the last discontinuity.
+
+      The counter32 type should not be used for configuration
+      schema nodes.  A default statement SHOULD NOT be used in
+      combination with the type counter32.
+
+      In the value set and its semantics, this type is equivalent
+      to the Counter32 type of the SMIv2.";
+    reference
+     "RFC 2578: Structure of Management Information Version 2
+                (SMIv2)";
+  }
+
+  typedef zero-based-counter32 {
+    type yang:counter32;
+    default "0";
+    description
+     "The zero-based-counter32 type represents a counter32
+      that has the defined 'initial' value zero.
+
+      A schema node of this type will be set to zero (0) on creation
+      and will thereafter increase monotonically until it reaches
+      a maximum value of 2^32-1 (4294967295 decimal), when it
+      wraps around and starts increasing again from zero.
+
+      Provided that an application discovers a new schema node
+      of this type within the minimum time to wrap, it can use the
+      'initial' value as a delta.  It is important for a management
+      station to be aware of this minimum time and the actual time
+      between polls, and to discard data if the actual time is too
+      long or there is no defined minimum time.
+
+      In the value set and its semantics, this type is equivalent
+      to the ZeroBasedCounter32 textual convention of the SMIv2.";
+    reference
+      "RFC 4502: Remote Network Monitoring Management Information
+                 Base Version 2";
+  }
+
+  typedef counter64 {
+    type uint64;
+    description
+     "The counter64 type represents a non-negative integer
+      that monotonically increases until it reaches a
+      maximum value of 2^64-1 (18446744073709551615 decimal),
+      when it wraps around and starts increasing again from zero.
+
+      Counters have no defined 'initial' value, and thus, a
+      single value of a counter has (in general) no information
+      content.  Discontinuities in the monotonically increasing
+      value normally occur at re-initialization of the
+      management system, and at other times as specified in the
+      description of a schema node using this type.  If such
+      other times can occur, for example, the creation of
+      a schema node of type counter64 at times other than
+      re-initialization, then a corresponding schema node
+      should be defined, with an appropriate type, to indicate
+      the last discontinuity.
+
+      The counter64 type should not be used for configuration
+      schema nodes.  A default statement SHOULD NOT be used in
+      combination with the type counter64.
+
+      In the value set and its semantics, this type is equivalent
+      to the Counter64 type of the SMIv2.";
+    reference
+     "RFC 2578: Structure of Management Information Version 2
+                (SMIv2)";
+  }
+
+  typedef zero-based-counter64 {
+    type yang:counter64;
+    default "0";
+    description
+     "The zero-based-counter64 type represents a counter64 that
+      has the defined 'initial' value zero.
+
+      A schema node of this type will be set to zero (0) on creation
+      and will thereafter increase monotonically until it reaches
+      a maximum value of 2^64-1 (18446744073709551615 decimal),
+      when it wraps around and starts increasing again from zero.
+
+      Provided that an application discovers a new schema node
+      of this type within the minimum time to wrap, it can use the
+      'initial' value as a delta.  It is important for a management
+      station to be aware of this minimum time and the actual time
+      between polls, and to discard data if the actual time is too
+      long or there is no defined minimum time.
+
+      In the value set and its semantics, this type is equivalent
+      to the ZeroBasedCounter64 textual convention of the SMIv2.";
+    reference
+     "RFC 2856: Textual Conventions for Additional High Capacity
+                Data Types";
+  }
+
+  typedef gauge32 {
+    type uint32;
+    description
+     "The gauge32 type represents a non-negative integer, which
+      may increase or decrease, but shall never exceed a maximum
+      value, nor fall below a minimum value.  The maximum value
+      cannot be greater than 2^32-1 (4294967295 decimal), and
+      the minimum value cannot be smaller than 0.  The value of
+      a gauge32 has its maximum value whenever the information
+      being modeled is greater than or equal to its maximum
+      value, and has its minimum value whenever the information
+      being modeled is smaller than or equal to its minimum value.
+      If the information being modeled subsequently decreases
+      below (increases above) the maximum (minimum) value, the
+      gauge32 also decreases (increases).
+
+      In the value set and its semantics, this type is equivalent
+      to the Gauge32 type of the SMIv2.";
+    reference
+     "RFC 2578: Structure of Management Information Version 2
+                (SMIv2)";
+  }
+
+  typedef gauge64 {
+    type uint64;
+    description
+     "The gauge64 type represents a non-negative integer, which
+      may increase or decrease, but shall never exceed a maximum
+      value, nor fall below a minimum value.  The maximum value
+      cannot be greater than 2^64-1 (18446744073709551615), and
+      the minimum value cannot be smaller than 0.  The value of
+      a gauge64 has its maximum value whenever the information
+      being modeled is greater than or equal to its maximum
+      value, and has its minimum value whenever the information
+      being modeled is smaller than or equal to its minimum value.
+      If the information being modeled subsequently decreases
+      below (increases above) the maximum (minimum) value, the
+      gauge64 also decreases (increases).
+
+      In the value set and its semantics, this type is equivalent
+      to the CounterBasedGauge64 SMIv2 textual convention defined
+      in RFC 2856";
+    reference
+     "RFC 2856: Textual Conventions for Additional High Capacity
+                Data Types";
+  }
+
+  /*** collection of identifier related types ***/
+
+  typedef object-identifier {
+    type string {
+      pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
+            + '(\.(0|([1-9]\d*)))*';
+    }
+    description
+     "The object-identifier type represents administratively
+      assigned names in a registration-hierarchical-name tree.
+
+      Values of this type are denoted as a sequence of numerical
+      non-negative sub-identifier values.  Each sub-identifier
+      value MUST NOT exceed 2^32-1 (4294967295).  Sub-identifiers
+      are separated by single dots and without any intermediate
+      whitespace.
+
+      The ASN.1 standard restricts the value space of the first
+      sub-identifier to 0, 1, or 2.  Furthermore, the value space
+      of the second sub-identifier is restricted to the range
+      0 to 39 if the first sub-identifier is 0 or 1.  Finally,
+      the ASN.1 standard requires that an object identifier
+      has always at least two sub-identifier.  The pattern
+      captures these restrictions.
+
+      Although the number of sub-identifiers is not limited,
+      module designers should realize that there may be
+      implementations that stick with the SMIv2 limit of 128
+      sub-identifiers.
+
+      This type is a superset of the SMIv2 OBJECT IDENTIFIER type
+      since it is not restricted to 128 sub-identifiers.  Hence,
+      this type SHOULD NOT be used to represent the SMIv2 OBJECT
+      IDENTIFIER type, the object-identifier-128 type SHOULD be
+      used instead.";
+    reference
+     "ISO9834-1: Information technology -- Open Systems
+      Interconnection -- Procedures for the operation of OSI
+      Registration Authorities: General procedures and top
+      arcs of the ASN.1 Object Identifier tree";
+  }
+
+  typedef object-identifier-128 {
+    type object-identifier {
+      pattern '\d*(\.\d*){1,127}';
+    }
+    description
+     "This type represents object-identifiers restricted to 128
+      sub-identifiers.
+
+      In the value set and its semantics, this type is equivalent
+      to the OBJECT IDENTIFIER type of the SMIv2.";
+    reference
+     "RFC 2578: Structure of Management Information Version 2
+                (SMIv2)";
+  }
+
+  typedef yang-identifier {
+    type string {
+      length "1..max";
+      pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
+      pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
+    }
+    description
+      "A YANG identifier string as defined in RFC 6020, page 163.
+       An identifier must start with an alphabetic character or
+       an underscore followed by an arbitrary sequence of
+       alphabetic or numeric characters, underscores, hyphens
+       or dots.
+
+       A YANG identifier MUST NOT start with any possible
+       combination of the lower-case or upper-case character
+       sequence 'xml'.";
+    reference
+      "RFC 6020: YANG - A Data Modeling Language for the Network
+                 Configuration Protocol (NETCONF)";
+  }
+
+  /*** collection of date and time related types ***/
+
+  typedef date-and-time {
+    type string {
+      pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
+            + '(Z|[\+\-]\d{2}:\d{2})';
+    }
+    description
+     "The date-and-time type is a profile of the ISO 8601
+      standard for representation of dates and times using the
+      Gregorian calendar.  The profile is defined by the
+      date-time production in Section 5.6 of RFC 3339.
+
+      The date-and-time type is compatible with the dateTime XML
+      schema type with the following notable exceptions:
+
+      (a) The date-and-time type does not allow negative years.
+
+      (b) The date-and-time time-offset -00:00 indicates an unknown
+          time zone (see RFC 3339) while -00:00 and +00:00 and Z all
+          represent the same time zone in dateTime.
+
+      (c) The canonical format (see below) of data-and-time values
+          differs from the canonical format used by the dateTime XML
+          schema type, which requires all times to be in UTC using
+          the time-offset 'Z'.
+
+      This type is not equivalent to the DateAndTime textual
+      convention of the SMIv2 since RFC 3339 uses a different
+      separator between full-date and full-time and provides
+      higher resolution of time-secfrac.
+      The canonical format for date-and-time values with a known time
+      zone uses a numeric time zone offset that is calculated using
+      the device's configured known offset to UTC time.  A change of
+      the device's offset to UTC time will cause date-and-time values
+      to change accordingly.  Such changes might happen periodically
+      in case a server follows automatically daylight saving time
+      (DST) time zone offset changes.  The canonical format for
+      date-and-time values with an unknown time zone (usually
+      referring to the notion of local time) uses the time-offset
+      -00:00.";
+    reference
+     "RFC 3339: Date and Time on the Internet: Timestamps
+      RFC 2579: Textual Conventions for SMIv2
+      XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
+  }
+
+  typedef timeticks {
+    type uint32;
+    description
+     "The timeticks type represents a non-negative integer that
+      represents the time, modulo 2^32 (4294967296 decimal), in
+      hundredths of a second between two epochs.  When a schema
+      node is defined that uses this type, the description of
+      the schema node identifies both of the reference epochs.
+
+      In the value set and its semantics, this type is equivalent
+      to the TimeTicks type of the SMIv2.";
+    reference
+     "RFC 2578: Structure of Management Information Version 2
+                (SMIv2)";
+  }
+
+  typedef timestamp {
+    type yang:timeticks;
+    description
+     "The timestamp type represents the value of an associated
+      timeticks schema node at which a specific occurrence
+      happened. The specific occurrence must be defined in the
+      description of any schema node defined using this type.  When
+      the specific occurrence occurred prior to the last time the
+      associated timeticks attribute was zero, then the timestamp
+      value is zero.  Note that this requires all timestamp values
+      to be reset to zero when the value of the associated timeticks
+      attribute reaches 497+ days and wraps around to zero.
+
+      The associated timeticks schema node must be specified
+      in the description of any schema node using this type.
+      In the value set and its semantics, this type is equivalent
+      to the TimeStamp textual convention of the SMIv2.";
+    reference
+     "RFC 2579: Textual Conventions for SMIv2";
+  }
+
+  /*** collection of generic address types ***/
+
+  typedef phys-address {
+    type string {
+      pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
+    }
+    description
+     "Represents media- or physical-level addresses represented
+      as a sequence octets, each octet represented by two hexadecimal
+      numbers.  Octets are separated by colons.  The canonical
+      representation uses lowercase characters.
+
+      In the value set and its semantics, this type is equivalent
+      to the PhysAddress textual convention of the SMIv2.";
+    reference
+     "RFC 2579: Textual Conventions for SMIv2";
+  }
+
+  typedef mac-address {
+    type string {
+      pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
+    }
+    description
+     "The mac-address type represents an IEEE 802 MAC address.
+      The canonical representation uses lowercase characters.
+
+      In the value set and its semantics, this type is equivalent
+      to the MacAddress textual convention of the SMIv2.";
+    reference
+     "IEEE 802: IEEE Standard for Local and Metropolitan Area
+                Networks: Overview and Architecture
+      RFC 2579: Textual Conventions for SMIv2";
+  }
+
+  /*** collection of XML specific types ***/
+
+  typedef xpath1.0 {
+    type string;
+    description
+     "This type represents an XPATH 1.0 expression.
+
+      When a schema node is defined that uses this type, the
+      description of the schema node MUST specify the XPath
+      context in which the XPath expression is evaluated.";
+    reference
+     "XPATH: XML Path Language (XPath) Version 1.0";
+  }
+
+  /*** collection of string types ***/
+
+  typedef hex-string {
+    type string {
+      pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
+    }
+    description
+     "A hexadecimal string with octets represented as hex digits
+      separated by colons.  The canonical representation uses
+      lowercase characters.";
+  }
+
+  typedef uuid {
+    type string {
+      pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
+            + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
+    }
+    description
+     "A Universally Unique IDentifier in the string representation
+      defined in RFC 4122.  The canonical representation uses
+      lowercase characters.
+
+      The following is an example of a UUID in string representation:
+      f81d4fae-7dec-11d0-a765-00a0c91e6bf6
+      ";
+    reference
+     "RFC 4122: A Universally Unique IDentifier (UUID) URN
+                Namespace";
+  }
+
+  typedef dotted-quad {
+    type string {
+      pattern
+        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+      + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
+    }
+    description
+      "An unsigned 32-bit number expressed in the dotted-quad
+       notation, i.e., four octets written as decimal numbers
+       and separated with the '.' (full stop) character.";
+  }
+}
\ No newline at end of file
diff --git a/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/src/js/extractYang.js b/data-model/tools/extractYangFrom3gpp/3gpp-ts-28.541/src/js/extractYang.js
new file mode 100644 (file)
index 0000000..4a6351b
--- /dev/null
@@ -0,0 +1,78 @@
+////////////////////////////////////////////////////////////////////////////////
+//
+// Copyright 2019 highstreet technologies GmbH and others...
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//     http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+const fs = require('fs');
+const args = process.argv.slice(2);
+const inputFile = __dirname + '/../../' + args[0];
+const target = __dirname + '/../../target';
+
+const deleteFolderRecursive = function(path) {
+  if (fs.existsSync(path)) {
+    fs.readdirSync(path).forEach(function(file, index){
+      var curPath = path + "/" + file;
+      if (fs.lstatSync(curPath).isDirectory()) { // recurse
+        deleteFolderRecursive(curPath);
+      } else { // delete file
+        fs.unlinkSync(curPath);
+      }
+    });
+    fs.rmdirSync(path);
+  }
+};
+
+if (!fs.existsSync(inputFile)) {
+  throw new Error(['Input file:', inputFile, 'not found!'].join(' '));
+}
+
+if (fs.existsSync(target)) {
+  // clean
+  deleteFolderRecursive(target);
+}
+
+
+// start
+fs.mkdirSync(target, { recursive: true });
+fs.readFile(inputFile, "utf8", function (err, data) {
+  if (err) {
+    return console.log(err);
+  }
+
+  var collect = false;
+  var file = [];
+  var filename = target + '/';
+
+  var modules = data.split(/\r?\n/).forEach(function (line) {
+
+    if (line.startsWith("submodule ") || line.startsWith("module ")) {
+      collect = true;
+      filename = target + "/" + line.split(' ')[1] + '.yang';
+      file = [];
+    }
+    if (collect === true) {
+      file.push(line);
+    }
+    if (line.startsWith("}")) {
+      collect = false;
+      fs.writeFile(filename, file.join("\n"), function (err) {
+        if (err) {
+          return console.log(err);
+        }
+        console.log(["The file", filename, "was saved!"].join(' '));
+      });
+    }
+  });
+});