/*- * Copyright (c) 2003, 2004 Lev Walkin . All rights reserved. * Redistribution and modifications are permitted subject to BSD license. */ #include #include #include /* * BIT STRING basic type description. */ static const ber_tlv_tag_t asn_DEF_BIT_STRING_tags[] = { (ASN_TAG_CLASS_UNIVERSAL | (3 << 2)) }; asn_OCTET_STRING_specifics_t asn_SPC_BIT_STRING_specs = { sizeof(BIT_STRING_t), offsetof(BIT_STRING_t, _asn_ctx), ASN_OSUBV_BIT }; asn_TYPE_operation_t asn_OP_BIT_STRING = { OCTET_STRING_free, /* Implemented in terms of OCTET STRING */ BIT_STRING_print, BIT_STRING_compare, OCTET_STRING_decode_ber, /* Implemented in terms of OCTET STRING */ OCTET_STRING_encode_der, /* Implemented in terms of OCTET STRING */ OCTET_STRING_decode_xer_binary, BIT_STRING_encode_xer, #ifdef ASN_DISABLE_OER_SUPPORT 0, 0, #else BIT_STRING_decode_oer, BIT_STRING_encode_oer, #endif /* ASN_DISABLE_OER_SUPPORT */ #ifdef ASN_DISABLE_PER_SUPPORT 0, 0, 0, 0, #else BIT_STRING_decode_uper, /* Unaligned PER decoder */ BIT_STRING_encode_uper, /* Unaligned PER encoder */ OCTET_STRING_decode_aper, /* Aligned PER decoder */ OCTET_STRING_encode_aper, /* Aligned PER encoder */ #endif /* ASN_DISABLE_PER_SUPPORT */ BIT_STRING_random_fill, 0 /* Use generic outmost tag fetcher */ }; asn_TYPE_descriptor_t asn_DEF_BIT_STRING = { "BIT STRING", "BIT_STRING", &asn_OP_BIT_STRING, asn_DEF_BIT_STRING_tags, sizeof(asn_DEF_BIT_STRING_tags) / sizeof(asn_DEF_BIT_STRING_tags[0]), asn_DEF_BIT_STRING_tags, /* Same as above */ sizeof(asn_DEF_BIT_STRING_tags) / sizeof(asn_DEF_BIT_STRING_tags[0]), { 0, 0, BIT_STRING_constraint }, 0, 0, /* No members */ &asn_SPC_BIT_STRING_specs }; /* * BIT STRING generic constraint. */ int BIT_STRING_constraint(const asn_TYPE_descriptor_t *td, const void *sptr, asn_app_constraint_failed_f *ctfailcb, void *app_key) { const BIT_STRING_t *st = (const BIT_STRING_t *)sptr; if(st && st->buf) { if((st->size == 0 && st->bits_unused) || st->bits_unused < 0 || st->bits_unused > 7) { ASN__CTFAIL(app_key, td, sptr, "%s: invalid padding byte (%s:%d)", td->name, __FILE__, __LINE__); return -1; } } else { ASN__CTFAIL(app_key, td, sptr, "%s: value not given (%s:%d)", td->name, __FILE__, __LINE__); return -1; } return 0; } static const char *_bit_pattern[16] = { "0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111" }; asn_enc_rval_t BIT_STRING_encode_xer(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, void *app_key) { asn_enc_rval_t er = {0, 0, 0}; char scratch[128]; char *p = scratch; char *scend = scratch + (sizeof(scratch) - 10); const BIT_STRING_t *st = (const BIT_STRING_t *)sptr; int xcan = (flags & XER_F_CANONICAL); uint8_t *buf; uint8_t *end; if(!st || !st->buf) ASN__ENCODE_FAILED; er.encoded = 0; buf = st->buf; end = buf + st->size - 1; /* Last byte is special */ /* * Binary dump */ for(; buf < end; buf++) { int v = *buf; int nline = xcan?0:(((buf - st->buf) % 8) == 0); if(p >= scend || nline) { ASN__CALLBACK(scratch, p - scratch); p = scratch; if(nline) ASN__TEXT_INDENT(1, ilevel); } memcpy(p + 0, _bit_pattern[v >> 4], 4); memcpy(p + 4, _bit_pattern[v & 0x0f], 4); p += 8; } if(!xcan && ((buf - st->buf) % 8) == 0) ASN__TEXT_INDENT(1, ilevel); ASN__CALLBACK(scratch, p - scratch); p = scratch; if(buf == end) { int v = *buf; int ubits = st->bits_unused; int i; for(i = 7; i >= ubits; i--) *p++ = (v & (1 << i)) ? 0x31 : 0x30; ASN__CALLBACK(scratch, p - scratch); } if(!xcan) ASN__TEXT_INDENT(1, ilevel - 1); ASN__ENCODED_OK(er); cb_failed: ASN__ENCODE_FAILED; } /* * BIT STRING specific contents printer. */ int BIT_STRING_print(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, asn_app_consume_bytes_f *cb, void *app_key) { const char * const h2c = "0123456789ABCDEF"; char scratch[64]; const BIT_STRING_t *st = (const BIT_STRING_t *)sptr; uint8_t *buf; uint8_t *end; char *p = scratch; (void)td; /* Unused argument */ if(!st || !st->buf) return (cb("", 8, app_key) < 0) ? -1 : 0; ilevel++; buf = st->buf; end = buf + st->size; /* * Hexadecimal dump. */ for(; buf < end; buf++) { if((buf - st->buf) % 16 == 0 && (st->size > 16) && buf != st->buf) { _i_INDENT(1); /* Dump the string */ if(cb(scratch, p - scratch, app_key) < 0) return -1; p = scratch; } *p++ = h2c[*buf >> 4]; *p++ = h2c[*buf & 0x0F]; *p++ = 0x20; } if(p > scratch) { p--; /* Eat the tailing space */ if((st->size > 16)) { _i_INDENT(1); } /* Dump the incomplete 16-bytes row */ if(cb(scratch, p - scratch, app_key) < 0) return -1; } if(st->bits_unused) { int ret = snprintf(scratch, sizeof(scratch), " (%d bit%s unused)", st->bits_unused, st->bits_unused == 1 ? "" : "s"); assert(ret > 0 && ret < (ssize_t)sizeof(scratch)); if(ret > 0 && ret < (ssize_t)sizeof(scratch) && cb(scratch, ret, app_key) < 0) return -1; } return 0; } /* * Non-destructively remove the trailing 0-bits from the given bit string. */ static const BIT_STRING_t * BIT_STRING__compactify(const BIT_STRING_t *st, BIT_STRING_t *tmp) { const uint8_t *b; union { const uint8_t *c_buf; uint8_t *nc_buf; } unconst; if(st->size == 0) { assert(st->bits_unused == 0); return st; } else { for(b = &st->buf[st->size - 1]; b > st->buf && *b == 0; b--) { ; } /* b points to the last byte which may contain data */ if(*b) { int unused = 7; uint8_t v = *b; v &= -(int8_t)v; if(v & 0x0F) unused -= 4; if(v & 0x33) unused -= 2; if(v & 0x55) unused -= 1; tmp->size = b-st->buf + 1; tmp->bits_unused = unused; } else { tmp->size = b-st->buf; tmp->bits_unused = 0; } assert(b >= st->buf); } unconst.c_buf = st->buf; tmp->buf = unconst.nc_buf; return tmp; } /* * Lexicographically compare the common prefix of both strings, * and if it is the same return -1 for the smallest string. */ int BIT_STRING_compare(const asn_TYPE_descriptor_t *td, const void *aptr, const void *bptr) { /* * Remove information about trailing bits, since * X.680 (08/2015) #22.7 "ensure that different semantics are not" * "associated with [values that differ only in] the trailing 0 bits." */ BIT_STRING_t compact_a, compact_b; const BIT_STRING_t *a = BIT_STRING__compactify(aptr, &compact_a); const BIT_STRING_t *b = BIT_STRING__compactify(bptr, &compact_b); const asn_OCTET_STRING_specifics_t *specs = td->specifics; assert(specs && specs->subvariant == ASN_OSUBV_BIT); if(a && b) { size_t common_prefix_size = a->size <= b->size ? a->size : b->size; int ret = memcmp(a->buf, b->buf, common_prefix_size); if(ret == 0) { /* Figure out which string with equal prefixes is longer. */ if(a->size < b->size) { return -1; } else if(a->size > b->size) { return 1; } else { /* Figure out how many unused bits */ if(a->bits_unused > b->bits_unused) { return -1; } else if(a->bits_unused < b->bits_unused) { return 1; } else { return 0; } } } else { return ret; } } else if(!a && !b) { return 0; } else if(!a) { return -1; } else { return 1; } } #ifndef ASN_DISABLE_PER_SUPPORT #undef RETURN #define RETURN(_code) \ do { \ asn_dec_rval_t tmprval; \ tmprval.code = _code; \ tmprval.consumed = consumed_myself; \ return tmprval; \ } while(0) static asn_per_constraint_t asn_DEF_BIT_STRING_constraint_size = { APC_SEMI_CONSTRAINED, -1, -1, 0, 0}; asn_dec_rval_t BIT_STRING_decode_uper(const asn_codec_ctx_t *opt_codec_ctx, const asn_TYPE_descriptor_t *td, const asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { const asn_OCTET_STRING_specifics_t *specs = td->specifics ? (const asn_OCTET_STRING_specifics_t *)td->specifics : &asn_SPC_BIT_STRING_specs; const asn_per_constraints_t *pc = constraints ? constraints : td->encoding_constraints.per_constraints; const asn_per_constraint_t *csiz; asn_dec_rval_t rval = { RC_OK, 0 }; BIT_STRING_t *st = (BIT_STRING_t *)*sptr; ssize_t consumed_myself = 0; int repeat; (void)opt_codec_ctx; if(pc) { csiz = &pc->size; } else { csiz = &asn_DEF_BIT_STRING_constraint_size; } if(specs->subvariant != ASN_OSUBV_BIT) { ASN_DEBUG("Subvariant %d is not BIT OSUBV_BIT", specs->subvariant); RETURN(RC_FAIL); } /* * Allocate the string. */ if(!st) { st = (BIT_STRING_t *)(*sptr = CALLOC(1, specs->struct_size)); if(!st) RETURN(RC_FAIL); } ASN_DEBUG("PER Decoding %s size %ld .. %ld bits %d", csiz->flags & APC_EXTENSIBLE ? "extensible" : "non-extensible", csiz->lower_bound, csiz->upper_bound, csiz->effective_bits); if(csiz->flags & APC_EXTENSIBLE) { int inext = per_get_few_bits(pd, 1); if(inext < 0) RETURN(RC_WMORE); if(inext) { csiz = &asn_DEF_BIT_STRING_constraint_size; } } if(csiz->effective_bits >= 0) { FREEMEM(st->buf); st->size = (csiz->upper_bound + 7) >> 3; st->buf = (uint8_t *)MALLOC(st->size + 1); if(!st->buf) { st->size = 0; RETURN(RC_FAIL); } } /* X.691, #16.5: zero-length encoding */ /* X.691, #16.6: short fixed length encoding (up to 2 octets) */ /* X.691, #16.7: long fixed length encoding (up to 64K octets) */ if(csiz->effective_bits == 0) { int ret; ASN_DEBUG("Encoding BIT STRING size %ld", csiz->upper_bound); ret = per_get_many_bits(pd, st->buf, 0, csiz->upper_bound); if(ret < 0) RETURN(RC_WMORE); consumed_myself += csiz->upper_bound; st->buf[st->size] = 0; st->bits_unused = (8 - (csiz->upper_bound & 0x7)) & 0x7; RETURN(RC_OK); } st->size = 0; do { ssize_t raw_len; ssize_t len_bytes; ssize_t len_bits; void *p; int ret; /* Get the PER length */ raw_len = uper_get_length(pd, csiz->effective_bits, csiz->lower_bound, &repeat); if(raw_len < 0) RETURN(RC_WMORE); if(raw_len == 0 && st->buf) break; ASN_DEBUG("Got PER length eb %ld, len %ld, %s (%s)", (long)csiz->effective_bits, (long)raw_len, repeat ? "repeat" : "once", td->name); len_bits = raw_len; len_bytes = (len_bits + 7) >> 3; if(len_bits & 0x7) st->bits_unused = 8 - (len_bits & 0x7); /* len_bits be multiple of 16K if repeat is set */ p = REALLOC(st->buf, st->size + len_bytes + 1); if(!p) RETURN(RC_FAIL); st->buf = (uint8_t *)p; ret = per_get_many_bits(pd, &st->buf[st->size], 0, len_bits); if(ret < 0) RETURN(RC_WMORE); st->size += len_bytes; } while(repeat); st->buf[st->size] = 0; /* nul-terminate */ return rval; } asn_enc_rval_t BIT_STRING_encode_uper(const asn_TYPE_descriptor_t *td, const asn_per_constraints_t *constraints, const void *sptr, asn_per_outp_t *po) { const asn_OCTET_STRING_specifics_t *specs = td->specifics ? (const asn_OCTET_STRING_specifics_t *)td->specifics : &asn_SPC_BIT_STRING_specs; const asn_per_constraints_t *pc = constraints ? constraints : td->encoding_constraints.per_constraints; const asn_per_constraint_t *csiz; const BIT_STRING_t *st = (const BIT_STRING_t *)sptr; BIT_STRING_t compact_bstr; /* Do not modify this directly! */ asn_enc_rval_t er = { 0, 0, 0 }; int inext = 0; /* Lies not within extension root */ size_t size_in_bits; const uint8_t *buf; int ret; int ct_extensible; if(!st || (!st->buf && st->size)) ASN__ENCODE_FAILED; if(specs->subvariant == ASN_OSUBV_BIT) { if((st->size == 0 && st->bits_unused) || (st->bits_unused & ~7)) ASN__ENCODE_FAILED; } else { ASN__ENCODE_FAILED; } if(pc) { csiz = &pc->size; } else { csiz = &asn_DEF_BIT_STRING_constraint_size; } ct_extensible = csiz->flags & APC_EXTENSIBLE; /* Figure out the size without the trailing bits */ st = BIT_STRING__compactify(st, &compact_bstr); size_in_bits = 8 * st->size - st->bits_unused; ASN_DEBUG( "Encoding %s into %" ASN_PRI_SIZE " bits" " (%ld..%ld, effective %d)%s", td->name, size_in_bits, csiz->lower_bound, csiz->upper_bound, csiz->effective_bits, ct_extensible ? " EXT" : ""); /* Figure out whether size lies within PER visible constraint */ if(csiz->effective_bits >= 0) { if((ssize_t)size_in_bits > csiz->upper_bound) { if(ct_extensible) { csiz = &asn_DEF_BIT_STRING_constraint_size; inext = 1; } else { ASN__ENCODE_FAILED; } } } else { inext = 0; } if(ct_extensible) { /* Declare whether length is [not] within extension root */ if(per_put_few_bits(po, inext, 1)) ASN__ENCODE_FAILED; } if(csiz->effective_bits >= 0 && !inext) { int add_trailer = (ssize_t)size_in_bits < csiz->lower_bound; ASN_DEBUG( "Encoding %" ASN_PRI_SIZE " bytes (%ld), length (in %d bits) trailer %d; actual " "value %" ASN_PRI_SSIZE "", st->size, size_in_bits - csiz->lower_bound, csiz->effective_bits, add_trailer, add_trailer ? 0 : (ssize_t)size_in_bits - csiz->lower_bound); ret = per_put_few_bits( po, add_trailer ? 0 : (ssize_t)size_in_bits - csiz->lower_bound, csiz->effective_bits); if(ret) ASN__ENCODE_FAILED; ret = per_put_many_bits(po, st->buf, size_in_bits); if(ret) ASN__ENCODE_FAILED; if(add_trailer) { static const uint8_t zeros[16]; size_t trailing_zero_bits = csiz->lower_bound - size_in_bits; while(trailing_zero_bits > 0) { if(trailing_zero_bits > 8 * sizeof(zeros)) { ret = per_put_many_bits(po, zeros, 8 * sizeof(zeros)); trailing_zero_bits -= 8 * sizeof(zeros); } else { ret = per_put_many_bits(po, zeros, trailing_zero_bits); trailing_zero_bits = 0; } if(ret) ASN__ENCODE_FAILED; } } ASN__ENCODED_OK(er); } ASN_DEBUG("Encoding %" ASN_PRI_SIZE " bytes", st->size); buf = st->buf; do { int need_eom = 0; ssize_t maySave = uper_put_length(po, size_in_bits, &need_eom); if(maySave < 0) ASN__ENCODE_FAILED; ASN_DEBUG("Encoding %" ASN_PRI_SSIZE " of %" ASN_PRI_SIZE "", maySave, size_in_bits); ret = per_put_many_bits(po, buf, maySave); if(ret) ASN__ENCODE_FAILED; buf += maySave >> 3; size_in_bits -= maySave; assert(!(maySave & 0x07) || !size_in_bits); if(need_eom && uper_put_length(po, 0, 0)) ASN__ENCODE_FAILED; /* End of Message length */ } while(size_in_bits); ASN__ENCODED_OK(er); } #endif /* ASN_DISABLE_PER_SUPPORT */ asn_random_fill_result_t BIT_STRING_random_fill(const asn_TYPE_descriptor_t *td, void **sptr, const asn_encoding_constraints_t *constraints, size_t max_length) { const asn_OCTET_STRING_specifics_t *specs = td->specifics ? (const asn_OCTET_STRING_specifics_t *)td->specifics : &asn_SPC_BIT_STRING_specs; asn_random_fill_result_t result_ok = {ARFILL_OK, 1}; asn_random_fill_result_t result_failed = {ARFILL_FAILED, 0}; asn_random_fill_result_t result_skipped = {ARFILL_SKIPPED, 0}; static unsigned lengths[] = {0, 1, 2, 3, 4, 8, 126, 127, 128, 16383, 16384, 16385, 65534, 65535, 65536, 65537}; uint8_t *buf; uint8_t *bend; uint8_t *b; size_t rnd_bits, rnd_len; BIT_STRING_t *st; if(max_length == 0) return result_skipped; switch(specs->subvariant) { case ASN_OSUBV_ANY: return result_failed; case ASN_OSUBV_BIT: break; default: break; } /* Figure out how far we should go */ rnd_bits = lengths[asn_random_between( 0, sizeof(lengths) / sizeof(lengths[0]) - 1)]; if(!constraints || !constraints->per_constraints) constraints = &td->encoding_constraints; if(constraints->per_constraints) { const asn_per_constraint_t *pc = &constraints->per_constraints->size; if(pc->flags & APC_CONSTRAINED) { long suggested_upper_bound = pc->upper_bound < (ssize_t)max_length ? pc->upper_bound : (ssize_t)max_length; if(max_length < (size_t)pc->lower_bound) { return result_skipped; } if(pc->flags & APC_EXTENSIBLE) { switch(asn_random_between(0, 5)) { case 0: if(pc->lower_bound > 0) { rnd_bits = pc->lower_bound - 1; break; } /* Fall through */ case 1: rnd_bits = pc->upper_bound + 1; break; case 2: /* Keep rnd_bits from the table */ if(rnd_bits < max_length) { break; } /* Fall through */ default: rnd_bits = asn_random_between(pc->lower_bound, suggested_upper_bound); } } else { rnd_bits = asn_random_between(pc->lower_bound, suggested_upper_bound); } } else { rnd_bits = asn_random_between(0, max_length - 1); } } else if(rnd_bits >= max_length) { rnd_bits = asn_random_between(0, max_length - 1); } rnd_len = (rnd_bits + 7) / 8; buf = CALLOC(1, rnd_len + 1); if(!buf) return result_failed; bend = &buf[rnd_len]; for(b = buf; b < bend; b++) { *(uint8_t *)b = asn_random_between(0, 255); } *b = 0; /* Zero-terminate just in case. */ if(*sptr) { st = *sptr; FREEMEM(st->buf); } else { st = (BIT_STRING_t *)(*sptr = CALLOC(1, specs->struct_size)); if(!st) { FREEMEM(buf); return result_failed; } } st->buf = buf; st->size = rnd_len; st->bits_unused = (8 - (rnd_bits & 0x7)) & 0x7; if(st->bits_unused) { assert(st->size > 0); st->buf[st->size-1] &= 0xff << st->bits_unused; } result_ok.length = st->size; return result_ok; }