X-Git-Url: https://gerrit.o-ran-sc.org/r/gitweb?p=o-du%2Fphy.git;a=blobdiff_plain;f=fhi_lib%2Flib%2Fsrc%2Fxran_frame_struct.c;h=35fcaab5dd80f852f869bc58e41adb5c3df5549c;hp=eb856d3b9f4636f140103ed7bff384db207f09dd;hb=2fbf70096f64af622da983e88c5a64e90ad9bdbd;hpb=9e108bb6d4caf2f6d4e920c640882fa49c15684c diff --git a/fhi_lib/lib/src/xran_frame_struct.c b/fhi_lib/lib/src/xran_frame_struct.c index eb856d3..35fcaab 100644 --- a/fhi_lib/lib/src/xran_frame_struct.c +++ b/fhi_lib/lib/src/xran_frame_struct.c @@ -1,517 +1,517 @@ -/****************************************************************************** -* -* Copyright (c) 2019 Intel. -* -* Licensed under the Apache License, Version 2.0 (the "License"); -* you may not use this file except in compliance with the License. -* You may obtain a copy of the License at -* -* http://www.apache.org/licenses/LICENSE-2.0 -* -* Unless required by applicable law or agreed to in writing, software -* distributed under the License is distributed on an "AS IS" BASIS, -* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -* See the License for the specific language governing permissions and -* limitations under the License. -* -*******************************************************************************/ - -/** - * @brief XRAN layer common functionality for both lls-CU and RU as well as C-plane and - * U-plane - * @file xran_common.c - * @ingroup group_source_xran - * @author Intel Corporation - **/ - -#include -#include -#include -#include -#include - -#include "xran_frame_struct.h" -#include "xran_printf.h" - -enum nXranChBwOptions -{ - XRAN_BW_5_0_MHZ = 5, XRAN_BW_10_0_MHZ = 10, XRAN_BW_15_0_MHZ = 15, XRAN_BW_20_0_MHZ = 20, XRAN_BW_25_0_MHZ = 25, - XRAN_BW_30_0_MHZ = 30, XRAN_BW_40_0_MHZ = 40, XRAN_BW_50_0_MHZ = 50, XRAN_BW_60_0_MHZ = 60, XRAN_BW_70_0_MHZ = 70, - XRAN_BW_80_0_MHZ = 80, XRAN_BW_90_0_MHZ = 90, XRAN_BW_100_0_MHZ = 100, XRAN_BW_200_0_MHZ = 200, XRAN_BW_400_0_MHZ = 400 -}; - -// F1 Tables 38.101-1 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB -static uint16_t nNumRbsPerSymF1[3][13] = -{ - // 5MHz 10MHz 15MHz 20 MHz 25 MHz 30 MHz 40 MHz 50MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz - {25, 52, 79, 106, 133, 160, 216, 270, 0, 0, 0, 0, 0}, // Numerology 0 (15KHz) - {11, 24, 38, 51, 65, 78, 106, 133, 162, 0, 217, 245, 273}, // Numerology 1 (30KHz) - {0, 11, 18, 24, 31, 38, 51, 65, 79, 0, 107, 121, 135} // Numerology 2 (60KHz) -}; - -// F2 Tables 38.101-2 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB -static uint16_t nNumRbsPerSymF2[2][4] = -{ - // 50Mhz 100MHz 200MHz 400MHz - {66, 132, 264, 0}, // Numerology 2 (60KHz) - {32, 66, 132, 264} // Numerology 3 (120KHz) -}; - -// 38.211 - Table 4.2.1 -static uint16_t nSubCarrierSpacing[5] = -{ - 15, // mu = 0 - 30, // mu = 1 - 60, // mu = 2 - 120, // mu = 3 - 240 // mu = 4 -}; - -// TTI interval in us (slot duration) -static uint16_t nTtiInterval[4] = -{ - 1000, // mu = 0 - 500, // mu = 1 - 250, // mu = 2 - 125, // mu = 3 -}; - -// F1 Tables 38.101-1 Table F.5.3. Window length for normal CP -static uint16_t nCpSizeF1[3][13][2] = -{ - // 5MHz 10MHz 15MHz 20 MHz 25 MHz 30 MHz 40 MHz 50MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz - {{40, 36}, {80, 72}, {120, 108}, {160, 144}, {160, 144}, {240, 216}, {320, 288}, {320, 288}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}, // Numerology 0 (15KHz) - {{22, 18}, {44, 36}, {66, 54}, {88, 72}, {88, 72}, {132, 108}, {176, 144}, {176, 144}, {264, 216}, {264, 216}, {352, 288}, {352, 288}, {352, 288}}, // Numerology 1 (30KHz) - { {0, 0}, {26, 18}, {39, 27}, {52, 36}, {52, 36}, {78, 54}, {104, 72}, {104, 72}, {156, 108}, {156, 108}, {208, 144}, {208, 144}, {208, 144}}, // Numerology 2 (60KHz) -}; - -// F2 Tables 38.101-2 Table F.5.3. Window length for normal CP -static int16_t nCpSizeF2[2][4][2] = -{ - // 50Mhz 100MHz 200MHz 400MHz - { {0, 0}, {104, 72}, {208, 144}, {416, 288}}, // Numerology 2 (60KHz) - {{68, 36}, {136, 72}, {272, 144}, {544, 288}}, // Numerology 3 (120KHz) -}; - -static uint32_t xran_fs_max_slot_num = 8000; -static uint32_t xran_fs_max_slot_num_SFN = 20480; /* max slot number counted as SFN is 0-1023 */ -static uint16_t xran_fs_num_slot_tdd_loop[XRAN_MAX_SECTOR_NR] = { XRAN_NUM_OF_SLOT_IN_TDD_LOOP }; -static uint16_t xran_fs_num_dl_sym_sp[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {0}; -static uint16_t xran_fs_num_ul_sym_sp[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {0}; -static uint8_t xran_fs_slot_type[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {{XRAN_SLOT_TYPE_INVALID}}; -static uint8_t xran_fs_slot_symb_type[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP][XRAN_NUM_OF_SYMBOL_PER_SLOT] = {{{XRAN_SLOT_TYPE_INVALID}}}; -static float xran_fs_ul_rate[XRAN_MAX_SECTOR_NR] = {0.0}; -static float xran_fs_dl_rate[XRAN_MAX_SECTOR_NR] = {0.0}; - -extern uint16_t xran_max_frame; - -uint32_t xran_fs_get_tti_interval(uint8_t nMu) -{ - if (nMu < 4) - { - return nTtiInterval[nMu]; - } - else - { - printf("ERROR: %s Mu[%d] is not valid, setting to 0\n",__FUNCTION__, nMu); - return nTtiInterval[0]; - } -} - -uint32_t xran_fs_get_scs(uint8_t nMu) -{ - if (nMu <= 3) - { - return nSubCarrierSpacing[nMu]; - } - else - { - printf("ERROR: %s Mu[%d] is not valid\n",__FUNCTION__, nMu); - } - - return 0; -} - -//------------------------------------------------------------------------------------------- -/** @ingroup group_nr5g_source_phy_common - * - * @param[in] nNumerology - Numerology determine sub carrier spacing, Value: 0->4 0: 15khz, 1: 30khz, 2: 60khz 3: 120khz, 4: 240khz - * @param[in] nBandwidth - Carrier bandwidth for in MHz. Value: 5->400 - * @param[in] nAbsFrePointA - Abs Freq Point A of the Carrier Center Frequency for in KHz Value: 450000->52600000 - * - * @return Number of RBs in cell - * - * @description - * Returns number of RBs based on 38.101-1 and 38.101-2 for the cell - * -**/ -//------------------------------------------------------------------------------------------- -uint16_t xran_fs_get_num_rbs(uint32_t nNumerology, uint32_t nBandwidth, uint32_t nAbsFrePointA) -{ - uint32_t error = 1; - uint16_t numRBs = 0; - - if (nAbsFrePointA <= 6000000) - { - // F1 Tables 38.101-1 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB - if (nNumerology < 3) - { - switch(nBandwidth) - { - case XRAN_BW_5_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][0]; - error = 0; - break; - case XRAN_BW_10_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][1]; - error = 0; - break; - case XRAN_BW_15_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][2]; - error = 0; - break; - case XRAN_BW_20_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][3]; - error = 0; - break; - case XRAN_BW_25_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][4]; - error = 0; - break; - case XRAN_BW_30_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][5]; - error = 0; - break; - case XRAN_BW_40_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][6]; - error = 0; - break; - case XRAN_BW_50_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][7]; - error = 0; - break; - case XRAN_BW_60_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][8]; - error = 0; - break; - case XRAN_BW_70_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][9]; - error = 0; - break; - case XRAN_BW_80_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][10]; - error = 0; - break; - case XRAN_BW_90_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][11]; - error = 0; - break; - case XRAN_BW_100_0_MHZ: - numRBs = nNumRbsPerSymF1[nNumerology][12]; - error = 0; - break; - default: - error = 1; - break; - } - } - } - else - { - if ((nNumerology >= 2) && (nNumerology <= 3)) - { - // F2 Tables 38.101-2 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB - switch(nBandwidth) - { - case XRAN_BW_50_0_MHZ: - numRBs = nNumRbsPerSymF2[nNumerology-2][0]; - error = 0; - break; - case XRAN_BW_100_0_MHZ: - numRBs = nNumRbsPerSymF2[nNumerology-2][1]; - error = 0; - break; - case XRAN_BW_200_0_MHZ: - numRBs = nNumRbsPerSymF2[nNumerology-2][2]; - error = 0; - break; - case XRAN_BW_400_0_MHZ: - numRBs = nNumRbsPerSymF2[nNumerology-2][3]; - error = 0; - break; - default: - error = 1; - break; - } - } - } - - - if (error) - { - printf("ERROR: %s: nNumerology[%d] nBandwidth[%d] nAbsFrePointA[%d]\n",__FUNCTION__, nNumerology, nBandwidth, nAbsFrePointA); - } - else - { - printf("%s: nNumerology[%d] nBandwidth[%d] nAbsFrePointA[%d] numRBs[%d]\n",__FUNCTION__, nNumerology, nBandwidth, nAbsFrePointA, numRBs); - } - - return numRBs; -} - -//------------------------------------------------------------------------------------------- -/** @ingroup phy_cal_nrarfcn - * - * @param[in] center frequency - * - * @return NR-ARFCN - * - * @description - * This calculates NR-ARFCN value according to center frequency - * -**/ -//------------------------------------------------------------------------------------------- -uint32_t xran_fs_cal_nrarfcn(uint32_t nCenterFreq) -{ - uint32_t nDeltaFglobal,nFoffs,nNoffs; - uint32_t nNRARFCN = 0; - - if(nCenterFreq > 0 && nCenterFreq < 3000*1000) - { - nDeltaFglobal = 5; - nFoffs = 0; - nNoffs = 0; - } - else if(nCenterFreq >= 3000*1000 && nCenterFreq < 24250*1000) - { - nDeltaFglobal = 15; - nFoffs = 3000*1000; - nNoffs = 600000; - } - else if(nCenterFreq >= 24250*1000 && nCenterFreq <= 100000*1000) - { - nDeltaFglobal = 60; - nFoffs = 24250080; - nNoffs = 2016667; - } - else - { - printf("@@@@ incorrect center frerquency %d\n",nCenterFreq); - return (0); - } - - nNRARFCN = ((nCenterFreq - nFoffs)/nDeltaFglobal) + nNoffs; - - printf("%s: nCenterFreq[%d] nDeltaFglobal[%d] nFoffs[%d] nNoffs[%d] nNRARFCN[%d]\n", __FUNCTION__, nCenterFreq, nDeltaFglobal, nFoffs, nNoffs, nNRARFCN); - return (nNRARFCN); -} - -uint32_t xran_fs_slot_limit_init(int32_t tti_interval_us) -{ - xran_fs_max_slot_num = (1000/tti_interval_us)*1000; - xran_fs_max_slot_num_SFN = (1000/tti_interval_us)*(xran_max_frame+1)*10; - return xran_fs_max_slot_num; -} - -uint32_t xran_fs_get_max_slot(void) -{ - return xran_fs_max_slot_num; -} - -uint32_t xran_fs_get_max_slot_SFN(void) -{ - return xran_fs_max_slot_num_SFN; -} - -int32_t xran_fs_slot_limit(int32_t nSfIdx) -{ - while (nSfIdx < 0) { - nSfIdx += xran_fs_max_slot_num; - } - - while (nSfIdx >= xran_fs_max_slot_num) { - nSfIdx -= xran_fs_max_slot_num; - } - - return nSfIdx; -} - -void xran_fs_clear_slot_type(uint32_t nPhyInstanceId) -{ - xran_fs_ul_rate[nPhyInstanceId] = 0.0; - xran_fs_dl_rate[nPhyInstanceId] = 0.0; - xran_fs_num_slot_tdd_loop[nPhyInstanceId] = 1; -} - -int32_t xran_fs_set_slot_type(uint32_t nPhyInstanceId, uint32_t nFrameDuplexType, uint32_t nTddPeriod, struct xran_slot_config* psSlotConfig) -{ - uint32_t nSlotNum, nSymNum, nVal, i, j; - uint32_t numDlSym, numUlSym, numGuardSym; - uint32_t numDlSlots = 0, numUlSlots = 0, numSpDlSlots = 0, numSpUlSlots = 0, numSpSlots = 0; - char sSlotPattern[XRAN_SLOT_TYPE_LAST][10] = {"IN\0", "DL\0", "UL\0", "SP\0", "FD\0"}; - - // nPhyInstanceId Carrier ID - // nFrameDuplexType 0 = FDD 1 = TDD - // nTddPeriod Tdd Periodicity - // psSlotConfig[80] Slot Config Structure for nTddPeriod Slots - - xran_fs_ul_rate[nPhyInstanceId] = 0.0; - xran_fs_dl_rate[nPhyInstanceId] = 0.0; - xran_fs_num_slot_tdd_loop[nPhyInstanceId] = nTddPeriod; - - for (i = 0; i < XRAN_NUM_OF_SLOT_IN_TDD_LOOP; i++) - { - xran_fs_slot_type[nPhyInstanceId][i] = XRAN_SLOT_TYPE_INVALID; - xran_fs_num_dl_sym_sp[nPhyInstanceId][i] = 0; - xran_fs_num_ul_sym_sp[nPhyInstanceId][i] = 0; - } - - if (nFrameDuplexType == XRAN_FDD) - { - for (i = 0; i < XRAN_NUM_OF_SLOT_IN_TDD_LOOP; i++) - { - xran_fs_slot_type[nPhyInstanceId][i] = XRAN_SLOT_TYPE_FDD; - for(j = 0; j < XRAN_NUM_OF_SYMBOL_PER_SLOT; j++) - xran_fs_slot_symb_type[nPhyInstanceId][i][j] = XRAN_SYMBOL_TYPE_FDD; - } - xran_fs_num_slot_tdd_loop[nPhyInstanceId] = 1; - xran_fs_dl_rate[nPhyInstanceId] = 1.0; - xran_fs_ul_rate[nPhyInstanceId] = 1.0; - } - else - { - for (nSlotNum = 0; nSlotNum < nTddPeriod; nSlotNum++) - { - numDlSym = 0; - numUlSym = 0; - numGuardSym = 0; - for (nSymNum = 0; nSymNum < XRAN_NUM_OF_SYMBOL_PER_SLOT; nSymNum++) - { - switch(psSlotConfig[nSlotNum].nSymbolType[nSymNum]) - { - case XRAN_SYMBOL_TYPE_DL: - numDlSym++; - xran_fs_slot_symb_type[nPhyInstanceId][nSlotNum][nSymNum] = XRAN_SYMBOL_TYPE_DL; - break; - case XRAN_SYMBOL_TYPE_GUARD: - xran_fs_slot_symb_type[nPhyInstanceId][nSlotNum][nSymNum] = XRAN_SYMBOL_TYPE_GUARD; - numGuardSym++; - break; - default: - xran_fs_slot_symb_type[nPhyInstanceId][nSlotNum][nSymNum] = XRAN_SYMBOL_TYPE_UL; - numUlSym++; - break; - } - } - - print_dbg("nSlotNum[%d] : numDlSym[%d] numGuardSym[%d] numUlSym[%d] ", nSlotNum, numDlSym, numGuardSym, numUlSym); - - if ((numUlSym == 0) && (numGuardSym == 0)) - { - xran_fs_slot_type[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_DL; - numDlSlots++; - print_dbg("XRAN_SLOT_TYPE_DL\n"); - } - else if ((numDlSym == 0) && (numGuardSym == 0)) - { - xran_fs_slot_type[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_UL; - numUlSlots++; - print_dbg("XRAN_SLOT_TYPE_UL\n"); - } - else - { - xran_fs_slot_type[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_SP; - numSpSlots++; - print_dbg("XRAN_SLOT_TYPE_SP\n"); - - if (numDlSym) - { - numSpDlSlots++; - xran_fs_num_dl_sym_sp[nPhyInstanceId][nSlotNum] = numDlSym; - } - if (numUlSym) - { - numSpUlSlots++; - xran_fs_num_ul_sym_sp[nPhyInstanceId][nSlotNum] = numUlSym; - } - } - print_dbg(" numDlSlots[%d] numUlSlots[%d] numSpSlots[%d] numSpDlSlots[%d] numSpUlSlots[%d]\n", numDlSlots, numUlSlots, numSpSlots, numSpDlSlots, numSpUlSlots); - } - - xran_fs_dl_rate[nPhyInstanceId] = (float)(numDlSlots + numSpDlSlots) / (float)nTddPeriod; - xran_fs_ul_rate[nPhyInstanceId] = (float)(numUlSlots + numSpUlSlots) / (float)nTddPeriod; - } - - print_dbg("%s: nPhyInstanceId[%d] nFrameDuplexType[%d], nTddPeriod[%d]\n", - __FUNCTION__, nPhyInstanceId, nFrameDuplexType, nTddPeriod); - - print_dbg("DLRate[%f] ULRate[%f]\n", xran_fs_dl_rate[nPhyInstanceId], xran_fs_ul_rate[nPhyInstanceId]); - - nVal = (xran_fs_num_slot_tdd_loop[nPhyInstanceId] < 10) ? xran_fs_num_slot_tdd_loop[nPhyInstanceId] : 10; - - print_dbg("SlotPattern:\n"); - print_dbg("Slot: "); - for (nSlotNum = 0; nSlotNum < nVal; nSlotNum++) - { - print_dbg("%d ", nSlotNum); - } - print_dbg("\n"); - - print_dbg(" %3d ", 0); - for (nSlotNum = 0, i = 0; nSlotNum < xran_fs_num_slot_tdd_loop[nPhyInstanceId]; nSlotNum++) - { - print_dbg("%s ", sSlotPattern[xran_fs_slot_type[nPhyInstanceId][nSlotNum]]); - i++; - if ((i == 10) && ((nSlotNum+1) < xran_fs_num_slot_tdd_loop[nPhyInstanceId])) - { - print_dbg("\n"); - print_dbg(" %3d ", nSlotNum); - i = 0; - } - } - print_dbg("\n\n"); - - return 0; -} - -int32_t xran_fs_get_slot_type(int32_t nCellIdx, int32_t nSlotdx, int32_t nType) -{ - int32_t nSfIdxMod, nSfType, ret = 0; - - nSfIdxMod = xran_fs_slot_limit(nSlotdx) % ((xran_fs_num_slot_tdd_loop[nCellIdx] > 0) ? xran_fs_num_slot_tdd_loop[nCellIdx]: 1); - nSfType = xran_fs_slot_type[nCellIdx][nSfIdxMod]; - - if (nSfType == nType) - { - ret = 1; - } - else if (nSfType == XRAN_SLOT_TYPE_SP) - { - if ((nType == XRAN_SLOT_TYPE_DL) && xran_fs_num_dl_sym_sp[nCellIdx][nSfIdxMod]) - { - ret = 1; - } - - if ((nType == XRAN_SLOT_TYPE_UL) && xran_fs_num_ul_sym_sp[nCellIdx][nSfIdxMod]) - { - ret = 1; - } - } - else if (nSfType == XRAN_SLOT_TYPE_FDD) - { - ret = 1; - } - - return ret; -} - -int32_t xran_fs_get_symbol_type(int32_t nCellIdx, int32_t nSlotdx, int32_t nSymbIdx) -{ - int32_t nSfIdxMod, nSfType, ret = 0; - - nSfIdxMod = xran_fs_slot_limit(nSlotdx) % ((xran_fs_num_slot_tdd_loop[nCellIdx] > 0) ? xran_fs_num_slot_tdd_loop[nCellIdx]: 1); - - return xran_fs_slot_symb_type[nCellIdx][nSfIdxMod][nSymbIdx]; -} - - +/****************************************************************************** +* +* Copyright (c) 2019 Intel. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* +*******************************************************************************/ + +/** + * @brief XRAN layer common functionality for both lls-CU and RU as well as C-plane and + * U-plane + * @file xran_common.c + * @ingroup group_source_xran + * @author Intel Corporation + **/ + +#include +#include +#include +#include +#include + +#include "xran_frame_struct.h" +#include "xran_printf.h" + +enum nXranChBwOptions +{ + XRAN_BW_5_0_MHZ = 5, XRAN_BW_10_0_MHZ = 10, XRAN_BW_15_0_MHZ = 15, XRAN_BW_20_0_MHZ = 20, XRAN_BW_25_0_MHZ = 25, + XRAN_BW_30_0_MHZ = 30, XRAN_BW_40_0_MHZ = 40, XRAN_BW_50_0_MHZ = 50, XRAN_BW_60_0_MHZ = 60, XRAN_BW_70_0_MHZ = 70, + XRAN_BW_80_0_MHZ = 80, XRAN_BW_90_0_MHZ = 90, XRAN_BW_100_0_MHZ = 100, XRAN_BW_200_0_MHZ = 200, XRAN_BW_400_0_MHZ = 400 +}; + +// F1 Tables 38.101-1 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB +static uint16_t nNumRbsPerSymF1[3][13] = +{ + // 5MHz 10MHz 15MHz 20 MHz 25 MHz 30 MHz 40 MHz 50MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz + {25, 52, 79, 106, 133, 160, 216, 270, 0, 0, 0, 0, 0}, // Numerology 0 (15KHz) + {11, 24, 38, 51, 65, 78, 106, 133, 162, 0, 217, 245, 273}, // Numerology 1 (30KHz) + {0, 11, 18, 24, 31, 38, 51, 65, 79, 0, 107, 121, 135} // Numerology 2 (60KHz) +}; + +// F2 Tables 38.101-2 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB +static uint16_t nNumRbsPerSymF2[2][4] = +{ + // 50Mhz 100MHz 200MHz 400MHz + {66, 132, 264, 0}, // Numerology 2 (60KHz) + {32, 66, 132, 264} // Numerology 3 (120KHz) +}; + +// 38.211 - Table 4.2.1 +static uint16_t nSubCarrierSpacing[5] = +{ + 15, // mu = 0 + 30, // mu = 1 + 60, // mu = 2 + 120, // mu = 3 + 240 // mu = 4 +}; + +// TTI interval in us (slot duration) +static uint16_t nTtiInterval[4] = +{ + 1000, // mu = 0 + 500, // mu = 1 + 250, // mu = 2 + 125, // mu = 3 +}; + +// F1 Tables 38.101-1 Table F.5.3. Window length for normal CP +static uint16_t nCpSizeF1[3][13][2] = +{ + // 5MHz 10MHz 15MHz 20 MHz 25 MHz 30 MHz 40 MHz 50MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz + {{40, 36}, {80, 72}, {120, 108}, {160, 144}, {160, 144}, {240, 216}, {320, 288}, {320, 288}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}, // Numerology 0 (15KHz) + {{22, 18}, {44, 36}, {66, 54}, {88, 72}, {88, 72}, {132, 108}, {176, 144}, {176, 144}, {264, 216}, {264, 216}, {352, 288}, {352, 288}, {352, 288}}, // Numerology 1 (30KHz) + { {0, 0}, {26, 18}, {39, 27}, {52, 36}, {52, 36}, {78, 54}, {104, 72}, {104, 72}, {156, 108}, {156, 108}, {208, 144}, {208, 144}, {208, 144}}, // Numerology 2 (60KHz) +}; + +// F2 Tables 38.101-2 Table F.5.3. Window length for normal CP +static int16_t nCpSizeF2[2][4][2] = +{ + // 50Mhz 100MHz 200MHz 400MHz + { {0, 0}, {104, 72}, {208, 144}, {416, 288}}, // Numerology 2 (60KHz) + {{68, 36}, {136, 72}, {272, 144}, {544, 288}}, // Numerology 3 (120KHz) +}; + +static uint32_t xran_fs_max_slot_num = 8000; +static uint32_t xran_fs_max_slot_num_SFN = 20480; /* max slot number counted as SFN is 0-1023 */ +static uint16_t xran_fs_num_slot_tdd_loop[XRAN_MAX_SECTOR_NR] = { XRAN_NUM_OF_SLOT_IN_TDD_LOOP }; +static uint16_t xran_fs_num_dl_sym_sp[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {0}; +static uint16_t xran_fs_num_ul_sym_sp[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {0}; +static uint8_t xran_fs_slot_type[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP] = {{XRAN_SLOT_TYPE_INVALID}}; +static uint8_t xran_fs_slot_symb_type[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SLOT_IN_TDD_LOOP][XRAN_NUM_OF_SYMBOL_PER_SLOT] = {{{XRAN_SLOT_TYPE_INVALID}}}; +static float xran_fs_ul_rate[XRAN_MAX_SECTOR_NR] = {0.0}; +static float xran_fs_dl_rate[XRAN_MAX_SECTOR_NR] = {0.0}; + +extern uint16_t xran_max_frame; + +uint32_t xran_fs_get_tti_interval(uint8_t nMu) +{ + if (nMu < 4) + { + return nTtiInterval[nMu]; + } + else + { + printf("ERROR: %s Mu[%d] is not valid, setting to 0\n",__FUNCTION__, nMu); + return nTtiInterval[0]; + } +} + +uint32_t xran_fs_get_scs(uint8_t nMu) +{ + if (nMu <= 3) + { + return nSubCarrierSpacing[nMu]; + } + else + { + printf("ERROR: %s Mu[%d] is not valid\n",__FUNCTION__, nMu); + } + + return 0; +} + +//------------------------------------------------------------------------------------------- +/** @ingroup group_nr5g_source_phy_common + * + * @param[in] nNumerology - Numerology determine sub carrier spacing, Value: 0->4 0: 15khz, 1: 30khz, 2: 60khz 3: 120khz, 4: 240khz + * @param[in] nBandwidth - Carrier bandwidth for in MHz. Value: 5->400 + * @param[in] nAbsFrePointA - Abs Freq Point A of the Carrier Center Frequency for in KHz Value: 450000->52600000 + * + * @return Number of RBs in cell + * + * @description + * Returns number of RBs based on 38.101-1 and 38.101-2 for the cell + * +**/ +//------------------------------------------------------------------------------------------- +uint16_t xran_fs_get_num_rbs(uint32_t nNumerology, uint32_t nBandwidth, uint32_t nAbsFrePointA) +{ + uint32_t error = 1; + uint16_t numRBs = 0; + + if (nAbsFrePointA <= 6000000) + { + // F1 Tables 38.101-1 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB + if (nNumerology < 3) + { + switch(nBandwidth) + { + case XRAN_BW_5_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][0]; + error = 0; + break; + case XRAN_BW_10_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][1]; + error = 0; + break; + case XRAN_BW_15_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][2]; + error = 0; + break; + case XRAN_BW_20_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][3]; + error = 0; + break; + case XRAN_BW_25_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][4]; + error = 0; + break; + case XRAN_BW_30_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][5]; + error = 0; + break; + case XRAN_BW_40_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][6]; + error = 0; + break; + case XRAN_BW_50_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][7]; + error = 0; + break; + case XRAN_BW_60_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][8]; + error = 0; + break; + case XRAN_BW_70_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][9]; + error = 0; + break; + case XRAN_BW_80_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][10]; + error = 0; + break; + case XRAN_BW_90_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][11]; + error = 0; + break; + case XRAN_BW_100_0_MHZ: + numRBs = nNumRbsPerSymF1[nNumerology][12]; + error = 0; + break; + default: + error = 1; + break; + } + } + } + else + { + if ((nNumerology >= 2) && (nNumerology <= 3)) + { + // F2 Tables 38.101-2 Table 5.3.2-1. Maximum transmission bandwidth configuration NRB + switch(nBandwidth) + { + case XRAN_BW_50_0_MHZ: + numRBs = nNumRbsPerSymF2[nNumerology-2][0]; + error = 0; + break; + case XRAN_BW_100_0_MHZ: + numRBs = nNumRbsPerSymF2[nNumerology-2][1]; + error = 0; + break; + case XRAN_BW_200_0_MHZ: + numRBs = nNumRbsPerSymF2[nNumerology-2][2]; + error = 0; + break; + case XRAN_BW_400_0_MHZ: + numRBs = nNumRbsPerSymF2[nNumerology-2][3]; + error = 0; + break; + default: + error = 1; + break; + } + } + } + + + if (error) + { + printf("ERROR: %s: nNumerology[%d] nBandwidth[%d] nAbsFrePointA[%d]\n",__FUNCTION__, nNumerology, nBandwidth, nAbsFrePointA); + } + else + { + printf("%s: nNumerology[%d] nBandwidth[%d] nAbsFrePointA[%d] numRBs[%d]\n",__FUNCTION__, nNumerology, nBandwidth, nAbsFrePointA, numRBs); + } + + return numRBs; +} + +//------------------------------------------------------------------------------------------- +/** @ingroup phy_cal_nrarfcn + * + * @param[in] center frequency + * + * @return NR-ARFCN + * + * @description + * This calculates NR-ARFCN value according to center frequency + * +**/ +//------------------------------------------------------------------------------------------- +uint32_t xran_fs_cal_nrarfcn(uint32_t nCenterFreq) +{ + uint32_t nDeltaFglobal,nFoffs,nNoffs; + uint32_t nNRARFCN = 0; + + if(nCenterFreq > 0 && nCenterFreq < 3000*1000) + { + nDeltaFglobal = 5; + nFoffs = 0; + nNoffs = 0; + } + else if(nCenterFreq >= 3000*1000 && nCenterFreq < 24250*1000) + { + nDeltaFglobal = 15; + nFoffs = 3000*1000; + nNoffs = 600000; + } + else if(nCenterFreq >= 24250*1000 && nCenterFreq <= 100000*1000) + { + nDeltaFglobal = 60; + nFoffs = 24250080; + nNoffs = 2016667; + } + else + { + printf("@@@@ incorrect center frerquency %d\n",nCenterFreq); + return (0); + } + + nNRARFCN = ((nCenterFreq - nFoffs)/nDeltaFglobal) + nNoffs; + + printf("%s: nCenterFreq[%d] nDeltaFglobal[%d] nFoffs[%d] nNoffs[%d] nNRARFCN[%d]\n", __FUNCTION__, nCenterFreq, nDeltaFglobal, nFoffs, nNoffs, nNRARFCN); + return (nNRARFCN); +} + +uint32_t xran_fs_slot_limit_init(int32_t tti_interval_us) +{ + xran_fs_max_slot_num = (1000/tti_interval_us)*1000; + xran_fs_max_slot_num_SFN = (1000/tti_interval_us)*(xran_max_frame+1)*10; + return xran_fs_max_slot_num; +} + +uint32_t xran_fs_get_max_slot(void) +{ + return xran_fs_max_slot_num; +} + +uint32_t xran_fs_get_max_slot_SFN(void) +{ + return xran_fs_max_slot_num_SFN; +} + +int32_t xran_fs_slot_limit(int32_t nSfIdx) +{ + while (nSfIdx < 0) { + nSfIdx += xran_fs_max_slot_num; + } + + while (nSfIdx >= xran_fs_max_slot_num) { + nSfIdx -= xran_fs_max_slot_num; + } + + return nSfIdx; +} + +void xran_fs_clear_slot_type(uint32_t nPhyInstanceId) +{ + xran_fs_ul_rate[nPhyInstanceId] = 0.0; + xran_fs_dl_rate[nPhyInstanceId] = 0.0; + xran_fs_num_slot_tdd_loop[nPhyInstanceId] = 1; +} + +int32_t xran_fs_set_slot_type(uint32_t nPhyInstanceId, uint32_t nFrameDuplexType, uint32_t nTddPeriod, struct xran_slot_config* psSlotConfig) +{ + uint32_t nSlotNum, nSymNum, nVal, i, j; + uint32_t numDlSym, numUlSym, numGuardSym; + uint32_t numDlSlots = 0, numUlSlots = 0, numSpDlSlots = 0, numSpUlSlots = 0, numSpSlots = 0; + char sSlotPattern[XRAN_SLOT_TYPE_LAST][10] = {"IN\0", "DL\0", "UL\0", "SP\0", "FD\0"}; + + // nPhyInstanceId Carrier ID + // nFrameDuplexType 0 = FDD 1 = TDD + // nTddPeriod Tdd Periodicity + // psSlotConfig[80] Slot Config Structure for nTddPeriod Slots + + xran_fs_ul_rate[nPhyInstanceId] = 0.0; + xran_fs_dl_rate[nPhyInstanceId] = 0.0; + xran_fs_num_slot_tdd_loop[nPhyInstanceId] = nTddPeriod; + + for (i = 0; i < XRAN_NUM_OF_SLOT_IN_TDD_LOOP; i++) + { + xran_fs_slot_type[nPhyInstanceId][i] = XRAN_SLOT_TYPE_INVALID; + xran_fs_num_dl_sym_sp[nPhyInstanceId][i] = 0; + xran_fs_num_ul_sym_sp[nPhyInstanceId][i] = 0; + } + + if (nFrameDuplexType == XRAN_FDD) + { + for (i = 0; i < XRAN_NUM_OF_SLOT_IN_TDD_LOOP; i++) + { + xran_fs_slot_type[nPhyInstanceId][i] = XRAN_SLOT_TYPE_FDD; + for(j = 0; j < XRAN_NUM_OF_SYMBOL_PER_SLOT; j++) + xran_fs_slot_symb_type[nPhyInstanceId][i][j] = XRAN_SYMBOL_TYPE_FDD; + } + xran_fs_num_slot_tdd_loop[nPhyInstanceId] = 1; + xran_fs_dl_rate[nPhyInstanceId] = 1.0; + xran_fs_ul_rate[nPhyInstanceId] = 1.0; + } + else + { + for (nSlotNum = 0; nSlotNum < nTddPeriod; nSlotNum++) + { + numDlSym = 0; + numUlSym = 0; + numGuardSym = 0; + for (nSymNum = 0; nSymNum < XRAN_NUM_OF_SYMBOL_PER_SLOT; nSymNum++) + { + switch(psSlotConfig[nSlotNum].nSymbolType[nSymNum]) + { + case XRAN_SYMBOL_TYPE_DL: + numDlSym++; + xran_fs_slot_symb_type[nPhyInstanceId][nSlotNum][nSymNum] = XRAN_SYMBOL_TYPE_DL; + break; + case XRAN_SYMBOL_TYPE_GUARD: + xran_fs_slot_symb_type[nPhyInstanceId][nSlotNum][nSymNum] = XRAN_SYMBOL_TYPE_GUARD; + numGuardSym++; + break; + default: + xran_fs_slot_symb_type[nPhyInstanceId][nSlotNum][nSymNum] = XRAN_SYMBOL_TYPE_UL; + numUlSym++; + break; + } + } + + print_dbg("nSlotNum[%d] : numDlSym[%d] numGuardSym[%d] numUlSym[%d] ", nSlotNum, numDlSym, numGuardSym, numUlSym); + + if ((numUlSym == 0) && (numGuardSym == 0)) + { + xran_fs_slot_type[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_DL; + numDlSlots++; + print_dbg("XRAN_SLOT_TYPE_DL\n"); + } + else if ((numDlSym == 0) && (numGuardSym == 0)) + { + xran_fs_slot_type[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_UL; + numUlSlots++; + print_dbg("XRAN_SLOT_TYPE_UL\n"); + } + else + { + xran_fs_slot_type[nPhyInstanceId][nSlotNum] = XRAN_SLOT_TYPE_SP; + numSpSlots++; + print_dbg("XRAN_SLOT_TYPE_SP\n"); + + if (numDlSym) + { + numSpDlSlots++; + xran_fs_num_dl_sym_sp[nPhyInstanceId][nSlotNum] = numDlSym; + } + if (numUlSym) + { + numSpUlSlots++; + xran_fs_num_ul_sym_sp[nPhyInstanceId][nSlotNum] = numUlSym; + } + } + print_dbg(" numDlSlots[%d] numUlSlots[%d] numSpSlots[%d] numSpDlSlots[%d] numSpUlSlots[%d]\n", numDlSlots, numUlSlots, numSpSlots, numSpDlSlots, numSpUlSlots); + } + + xran_fs_dl_rate[nPhyInstanceId] = (float)(numDlSlots + numSpDlSlots) / (float)nTddPeriod; + xran_fs_ul_rate[nPhyInstanceId] = (float)(numUlSlots + numSpUlSlots) / (float)nTddPeriod; + } + + print_dbg("%s: nPhyInstanceId[%d] nFrameDuplexType[%d], nTddPeriod[%d]\n", + __FUNCTION__, nPhyInstanceId, nFrameDuplexType, nTddPeriod); + + print_dbg("DLRate[%f] ULRate[%f]\n", xran_fs_dl_rate[nPhyInstanceId], xran_fs_ul_rate[nPhyInstanceId]); + + nVal = (xran_fs_num_slot_tdd_loop[nPhyInstanceId] < 10) ? xran_fs_num_slot_tdd_loop[nPhyInstanceId] : 10; + + print_dbg("SlotPattern:\n"); + print_dbg("Slot: "); + for (nSlotNum = 0; nSlotNum < nVal; nSlotNum++) + { + print_dbg("%d ", nSlotNum); + } + print_dbg("\n"); + + print_dbg(" %3d ", 0); + for (nSlotNum = 0, i = 0; nSlotNum < xran_fs_num_slot_tdd_loop[nPhyInstanceId]; nSlotNum++) + { + print_dbg("%s ", sSlotPattern[xran_fs_slot_type[nPhyInstanceId][nSlotNum]]); + i++; + if ((i == 10) && ((nSlotNum+1) < xran_fs_num_slot_tdd_loop[nPhyInstanceId])) + { + print_dbg("\n"); + print_dbg(" %3d ", nSlotNum); + i = 0; + } + } + print_dbg("\n\n"); + + return 0; +} + +int32_t xran_fs_get_slot_type(int32_t nCellIdx, int32_t nSlotdx, int32_t nType) +{ + int32_t nSfIdxMod, nSfType, ret = 0; + + nSfIdxMod = xran_fs_slot_limit(nSlotdx) % ((xran_fs_num_slot_tdd_loop[nCellIdx] > 0) ? xran_fs_num_slot_tdd_loop[nCellIdx]: 1); + nSfType = xran_fs_slot_type[nCellIdx][nSfIdxMod]; + + if (nSfType == nType) + { + ret = 1; + } + else if (nSfType == XRAN_SLOT_TYPE_SP) + { + if ((nType == XRAN_SLOT_TYPE_DL) && xran_fs_num_dl_sym_sp[nCellIdx][nSfIdxMod]) + { + ret = 1; + } + + if ((nType == XRAN_SLOT_TYPE_UL) && xran_fs_num_ul_sym_sp[nCellIdx][nSfIdxMod]) + { + ret = 1; + } + } + else if (nSfType == XRAN_SLOT_TYPE_FDD) + { + ret = 1; + } + + return ret; +} + +int32_t xran_fs_get_symbol_type(int32_t nCellIdx, int32_t nSlotdx, int32_t nSymbIdx) +{ + int32_t nSfIdxMod, nSfType, ret = 0; + + nSfIdxMod = xran_fs_slot_limit(nSlotdx) % ((xran_fs_num_slot_tdd_loop[nCellIdx] > 0) ? xran_fs_num_slot_tdd_loop[nCellIdx]: 1); + + return xran_fs_slot_symb_type[nCellIdx][nSfIdxMod][nSymbIdx]; +} + +