/****************************************************************************** * * Copyright (c) 2019 Intel. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *******************************************************************************/ /** * @brief XRAN layer common functionality for both lls-CU and RU as well as C-plane and * U-plane * @file xran_common.h * @ingroup group_source_xran * @author Intel Corporation **/ #ifndef _XRAN_COMMON_H_ #define _XRAN_COMMON_H_ #include #include #include #include #include #include "xran_fh_lls_cu.h" #include "xran_pkt_up.h" #define APP_LLS_CU 0 #define APP_RU 1 #define NUM_OF_PRB_IN_FULL_BAND (66) #define N_SC_PER_PRB 12 #define N_SYM_PER_SLOT 14 #define N_FULLBAND_SC (NUM_OF_PRB_IN_FULL_BAND*N_SC_PER_PRB) #define MAX_ANT_CARRIER_SUPPORTED 16 /* 0.125, just for testing */ #define SLOTNUM_PER_SUBFRAME 8 #define SUBFRAMES_PER_SYSTEMFRAME 10 #define SLOTS_PER_SYSTEMFRAME (SLOTNUM_PER_SUBFRAME*SUBFRAMES_PER_SYSTEMFRAME) #define PDSCH_PAYLOAD_SIZE (N_FULLBAND_SC*4) #define NUM_OF_SLOT_IN_TDD_LOOP (80) #define IQ_PLAYBACK_BUFFER_BYTES (NUM_OF_SLOT_IN_TDD_LOOP*N_SYM_PER_SLOT*N_FULLBAND_SC*4L) /* PRACH data samples are 32 bits wide, 16bits for I and 16bits for Q. Each packet contains 839 samples. The payload length is 3356 octets.*/ #define PRACH_PLAYBACK_BUFFER_BYTES (10*839*4L) #define XRAN_MAX_NUM_SECTIONS (NUM_OF_PRB_IN_FULL_BAND) // TODO: need to decide proper value #define XRAN_MAX_MBUF_LEN 9600 /**< jummbo frame */ #define NSEC_PER_SEC 1000000000 #define TIMER_RESOLUTION_CYCLES 1596*1 /* 1us */ #define XRAN_RING_SIZE 512 /*4*14*8 pow of 2 */ #define XRAN_NAME_MAX_LEN (64) #define XRAN_RING_NUM (3) #define MAX_NUM_OF_XRAN_CTX (2) #define XranIncrementCtx(ctx) ((ctx >= (MAX_NUM_OF_XRAN_CTX-1)) ? 0 : (ctx+1)) #define XranDecrementCtx(ctx) ((ctx == 0) ? (MAX_NUM_OF_XRAN_CTX-1) : (ctx-1)) #define XranDiffSymIdx(prevSymIdx, currSymIdx, numTotalSymIdx) ((prevSymIdx > currSymIdx) ? ((currSymIdx + numTotalSymIdx) - prevSymIdx) : (currSymIdx - prevSymIdx)) #define XRAN_SYM_JOB_SIZE 512 struct send_symbol_cb_args { struct rb_map *samp_buf; uint8_t *symb_id; }; struct pkt_dump { int num_samp; int num_bytes; uint8_t symb; struct ecpri_seq_id seq; } __rte_packed; /* PRACH configuration table defines */ #define XRAN_PRACH_CANDIDATE_PREAMBLE (2) #define XRAN_PRACH_CANDIDATE_Y (2) #define XRAN_PRACH_CANDIDATE_SLOT (40) #define XRAN_PRACH_CONFIG_TABLE_SIZE (256) #define XRAN_PRACH_PREAMBLE_FORMAT_OF_ABC (9) typedef enum { FORMAT_0 = 0, FORMAT_1, FORMAT_2, FORMAT_3, FORMAT_A1, FORMAT_A2, FORMAT_A3, FORMAT_B1, FORMAT_B2, FORMAT_B3, FORMAT_B4, FORMAT_C0, FORMAT_C2, FORMAT_LAST }PreambleFormatEnum; /* add PRACH used config table, same structure as used in refPHY */ typedef struct { uint8_t prachConfigIdx; uint8_t preambleFmrt[XRAN_PRACH_CANDIDATE_PREAMBLE]; uint8_t x; uint8_t y[XRAN_PRACH_CANDIDATE_Y]; uint8_t slotNr[XRAN_PRACH_CANDIDATE_SLOT]; uint8_t slotNrNum; uint8_t startingSym; uint8_t nrofPrachInSlot; uint8_t occassionsInPrachSlot; uint8_t duration; } xRANPrachConfigTableStruct; typedef struct { uint8_t preambleFmrt; uint16_t lRALen; uint8_t fRA; uint32_t nu; uint16_t nRaCp; }xRANPrachPreambleLRAStruct; typedef struct { uint8_t filterIdx; uint8_t startSymId; uint16_t startPrbc; uint8_t numPrbc; uint8_t numSymbol; uint16_t timeOffset; int32_t freqOffset; uint8_t occassionsInPrachSlot; uint8_t x; uint8_t y[XRAN_PRACH_CANDIDATE_Y]; uint8_t isPRACHslot[XRAN_PRACH_CANDIDATE_SLOT]; }xRANPrachCPConfigStruct; typedef struct DeviceHandleInfo { /**< Structure that contains the information to describe the * instance i.e service type, virtual function, package Id etc..*/ uint16_t nIndex; /* Unique ID of an handle shared between phy layer and library */ /**< number of antennas supported per link*/ uint32_t nBufferPoolIndex; /**< Buffer poolIndex*/ struct rte_mempool * p_bufferPool[XRAN_MAX_SECTOR_NR]; uint32_t bufferPoolElmSz[XRAN_MAX_SECTOR_NR]; uint32_t bufferPoolNumElm[XRAN_MAX_SECTOR_NR]; }XranLibHandleInfoStruct; typedef void (*XranSymCallbackFn)(struct rte_timer *tim, void* arg); /* * manage one cell's all Ethernet frames for one DL or UL LTE subframe */ typedef struct { /* -1-this subframe is not used in current frame format 0-this subframe can be transmitted, i.e., data is ready 1-this subframe is waiting transmission, i.e., data is not ready 10 - DL transmission missing deadline. When FE needs this subframe data but bValid is still 1, set bValid to 10. */ int32_t bValid ; // when UL rx, it is subframe index. int32_t nSegToBeGen; int32_t nSegGenerated; // how many date segment are generated by DL LTE processing or received from FE // -1 means that DL packet to be transmitted is not ready in BS int32_t nSegTransferred; // number of data segments has been transmitted or received struct rte_mbuf *pData[XRAN_N_MAX_BUFFER_SEGMENT]; // point to DPDK allocated memory pool XRANBufferListStruct sBufferList; } BbuIoBufCtrlStruct; struct xran_sym_job { uint32_t sym_idx; uint32_t status; }__rte_cache_aligned; #define XranIncrementJob(i) ((i >= (XRAN_SYM_JOB_SIZE-1)) ? 0 : (i+1)) struct xran_lib_ctx { uint8_t llscu_id; uint8_t sector_id; XRANEAXCIDCONFIG eAxc_id_cfg; XRANFHINIT xran_init_cfg; XRANFHCONFIG xran_fh_cfg; XranLibHandleInfoStruct* pDevHandle; xRANPrachCPConfigStruct PrachCPConfig; uint32_t enableCP; char ring_name[XRAN_RING_NUM][XRAN_MAX_SECTOR_NR][RTE_RING_NAMESIZE]; struct rte_ring *dl_sym_idx_ring[XRAN_MAX_SECTOR_NR]; struct rte_ring *xran2phy_ring[XRAN_MAX_SECTOR_NR]; struct rte_ring *xran2prach_ring[XRAN_MAX_SECTOR_NR]; struct xran_sym_job sym_job[XRAN_SYM_JOB_SIZE]; uint32_t sym_job_idx; BbuIoBufCtrlStruct sFrontHaulTxBbuIoBufCtrl[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_MAX_ANTENNA_NR]; BbuIoBufCtrlStruct sFrontHaulRxBbuIoBufCtrl[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_MAX_ANTENNA_NR]; BbuIoBufCtrlStruct sFHPrachRxBbuIoBufCtrl[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_MAX_ANTENNA_NR]; /* buffers lists */ XRANFlatBufferStruct sFrontHaulTxBuffers[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_MAX_ANTENNA_NR][XRAN_NUM_OF_SYMBOL_PER_SLOT]; XRANFlatBufferStruct sFrontHaulRxBuffers[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_MAX_ANTENNA_NR][XRAN_NUM_OF_SYMBOL_PER_SLOT]; XRANFlatBufferStruct sFHPrachRxBuffers[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_MAX_ANTENNA_NR][XRAN_NUM_OF_SYMBOL_PER_SLOT]; XranTransportBlockCallbackFn pCallback[XRAN_MAX_SECTOR_NR]; void *pCallbackTag[XRAN_MAX_SECTOR_NR]; XranTransportBlockCallbackFn pPrachCallback[XRAN_MAX_SECTOR_NR]; void *pPrachCallbackTag[XRAN_MAX_SECTOR_NR]; XranSymCallbackFn pSymCallback[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SYMBOL_PER_SLOT]; void *pSymCallbackTag[XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SYMBOL_PER_SLOT]; int32_t sym_up; /**< when we start sym 0 of up with respect to OTA time as measured in symbols */ int32_t sym_up_ul; XRANFHTTIPROCCB ttiCb[XRAN_CB_MAX]; void *TtiCbParam[XRAN_CB_MAX]; uint32_t SkipTti[XRAN_CB_MAX]; int xran2phy_mem_ready; int rx_packet_symb_tracker[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR][XRAN_NUM_OF_SYMBOL_PER_SLOT]; int rx_packet_callback_tracker[XRAN_N_FE_BUF_LEN][XRAN_MAX_SECTOR_NR]; int phy_tti_cb_done; }; extern const xRANPrachConfigTableStruct gxranPrachDataTable_sub6_fdd[XRAN_PRACH_CONFIG_TABLE_SIZE]; extern const xRANPrachConfigTableStruct gxranPrachDataTable_sub6_tdd[XRAN_PRACH_CONFIG_TABLE_SIZE]; extern const xRANPrachConfigTableStruct gxranPrachDataTable_mmw[XRAN_PRACH_CONFIG_TABLE_SIZE]; extern const xRANPrachPreambleLRAStruct gxranPreambleforLRA[XRAN_PRACH_PREAMBLE_FORMAT_OF_ABC]; int process_mbuf(struct rte_mbuf *pkt); int process_ring(struct rte_ring *r); int ring_processing_thread(void *args); int packets_dump_thread(void *args); int send_symbol_ex(enum xran_pkt_dir direction, uint16_t section_id, struct rb_map *data, uint8_t frame_id, uint8_t subframe_id, uint8_t slot_id, uint8_t symbol_no, int prb_start, int prb_num, uint8_t CC_ID, uint8_t RU_Port_ID, uint8_t seq_id); int send_cpmsg_dlul(void *pHandle, enum xran_pkt_dir dir, uint8_t frame_id, uint8_t subframe_id, uint8_t slot_id, uint8_t startsym, uint8_t numsym, int prb_num, uint16_t beam_id, uint8_t cc_id, uint8_t ru_port_id, uint8_t seq_id); int send_cpmsg_prach(void *pHandle, uint8_t frame_id, uint8_t subframe_id, uint8_t slot_id, uint16_t beam_id, uint8_t cc_id, uint8_t prach_port_id, uint8_t seq_id); uint8_t xran_get_max_sections(void *pHandle); XRANEAXCIDCONFIG *xran_get_conf_eAxC(void *pHandle); uint8_t xran_get_conf_prach_scs(void *pHandle); uint8_t xran_get_conf_fftsize(void *pHandle); uint8_t xran_get_conf_numerology(void *pHandle); uint8_t xran_get_conf_iqwidth(void *pHandle); uint8_t xran_get_conf_compmethod(void *pHandle); uint8_t xran_get_num_cc(void *pHandle); uint8_t xran_get_num_eAxc(void *pHandle); uint8_t xran_get_llscuid(void *pHandle); uint8_t xran_get_sectorid(void *pHandle); struct xran_lib_ctx *xran_lib_get_ctx(void); uint16_t xran_alloc_sectionid(void *pHandle, uint8_t dir, uint8_t cc_id, uint8_t ant_id, uint8_t slot_id); uint8_t xran_get_seqid(void *pHandle, uint8_t dir, uint8_t cc_id, uint8_t ant_id, uint8_t slot_id); #endif