@patch('trainingmgr.common.trainingmgr_util.isinstance',return_value=True)
def test_check_trainingjob_data(self,mock1,mock2):
usecase_name = "usecase8"
- json_data = { "description":"unittest", "feature_list": ["apple", "banana", "cherry"] , "pipeline_name":"qoe" , "experiment_name":"experiment1" , "arguments":"arguments1" , "query_filter":"query1" , "enable_versioning":True , "target_deployment":"Near RT RIC" , "pipeline_version":1 , "datalake_source":"cassandra db" , "incremental_training":True , "model":"usecase7" , "model_version":1 , "_measurement":2 , "bucket":"bucket1"}
+ json_data = { "description":"unittest", "featureGroup_name": "group1" , "pipeline_name":"qoe" , "experiment_name":"experiment1" , "arguments":"arguments1" , "query_filter":"query1" , "enable_versioning":True , "target_deployment":"Near RT RIC" , "pipeline_version":1 , "datalake_source":"cassandra db" , "incremental_training":True , "model":"usecase7" , "model_version":1 , "_measurement":2 , "bucket":"bucket1"}
- expected_data = (['apple', 'banana', 'cherry'], 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
+ expected_data = ("group1", 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
assert check_trainingjob_data(usecase_name, json_data) == expected_data,"data not equal"
def test_negative_check_trainingjob_data_1(self):
usecase_name = "usecase8"
- json_data = { "description":"unittest", "feature_list": ["apple", "banana", "cherry"] , "pipeline_name":"qoe" , "experiment_name":"experiment1" , "arguments":"arguments1" , "query_filter":"query1" , "enable_versioning":True , "target_deployment":"Near RT RIC" , "pipeline_version":1 , "datalake_source":"cassandra db" , "incremental_training":True , "model":"usecase7" , "model_version":1 , "_measurement":2 , "bucket":"bucket1"}
+ json_data = { "description":"unittest", "featureGroup_name": "group1" , "pipeline_name":"qoe" , "experiment_name":"experiment1" , "arguments":"arguments1" , "query_filter":"query1" , "enable_versioning":True , "target_deployment":"Near RT RIC" , "pipeline_version":1 , "datalake_source":"cassandra db" , "incremental_training":True , "model":"usecase7" , "model_version":1 , "_measurement":2 , "bucket":"bucket1"}
- expected_data = (['apple', 'banana', 'cherry'], 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
+ expected_data = ("group1", 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
try:
assert check_trainingjob_data(usecase_name, json_data) == expected_data,"data not equal"
assert False
@patch('trainingmgr.common.trainingmgr_util.check_key_in_dictionary',return_value=True)
def test_negative_check_trainingjob_data_2(self,mock1):
usecase_name = "usecase8"
- json_data = { "description":"unittest", "feature_list": ["apple", "banana", "cherry"] , "pipeline_name":"qoe" , "experiment_name":"experiment1" , "arguments":"arguments1" , "query_filter":"query1" , "enable_versioning":True , "target_deployment":"Near RT RIC" , "pipeline_version":1 , "datalake_source":"cassandra db" , "incremental_training":True , "model":"usecase7" , "model_version":1 , "_measurement":2 , "bucket":"bucket1"}
+ json_data = { "description":"unittest", "featureGroup_name": "group1" , "pipeline_name":"qoe" , "experiment_name":"experiment1" , "arguments":"arguments1" , "query_filter":"query1" , "enable_versioning":True , "target_deployment":"Near RT RIC" , "pipeline_version":1 , "datalake_source":"cassandra db" , "incremental_training":True , "model":"usecase7" , "model_version":1 , "_measurement":2 , "bucket":"bucket1"}
- expected_data = (['apple', 'banana', 'cherry'], 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
+ expected_data = ("group1", 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
try:
assert check_trainingjob_data(usecase_name, json_data) == expected_data,"data not equal"
assert False
def test_negative_check_trainingjob_data_3(self,mock1):
usecase_name = "usecase8"
json_data = None
- expected_data = (['apple', 'banana', 'cherry'], 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
+ expected_data = ("group1", 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1')
try:
assert check_trainingjob_data(usecase_name, json_data) == expected_data,"data not equal"
assert False
json with below fields are given:
description: str
description
- feature_list: str
- feature names
+ featuregroup_name: str
+ feature group name
pipeline_name: str
name of pipeline
experiment_name: str
response_code = status.HTTP_409_CONFLICT
raise TMException("trainingjob name(" + trainingjob_name + ") is already present in database")
else:
- (feature_list, description, pipeline_name, experiment_name,
+ (featuregroup_name, description, pipeline_name, experiment_name,
arguments, query_filter, enable_versioning, pipeline_version,
datalake_source, _measurement, bucket) = \
check_trainingjob_data(trainingjob_name, json_data)
- add_update_trainingjob(description, pipeline_name, experiment_name, feature_list,
+ add_update_trainingjob(description, pipeline_name, experiment_name, featuregroup_name,
arguments, query_filter, True, enable_versioning,
pipeline_version, datalake_source, trainingjob_name,
PS_DB_OBJ, _measurement=_measurement,
not in [States.FAILED.name, States.FINISHED.name]):
raise TMException("Trainingjob(" + trainingjob_name + ") is not in finished or failed status")
- (feature_list, description, pipeline_name, experiment_name,
+ (featuregroup_name, description, pipeline_name, experiment_name,
arguments, query_filter, enable_versioning, pipeline_version,
datalake_source, _measurement, bucket) = check_trainingjob_data(trainingjob_name, json_data)
- add_update_trainingjob(description, pipeline_name, experiment_name, feature_list,
+ add_update_trainingjob(description, pipeline_name, experiment_name, featuregroup_name,
arguments, query_filter, False, enable_versioning,
pipeline_version, datalake_source, trainingjob_name, PS_DB_OBJ, _measurement=_measurement,
bucket=bucket)
description = results[0][1]
pipeline_name = results[0][3]
experiment_name = results[0][4]
- feature_list = results[0][2]
+ featuregroup_name = results[0][2]
arguments = json.loads(results[0][5])['arguments']
query_filter = results[0][6]
datalake_source = get_one_key(json.loads(results[0][14])["datalake_source"])
try:
add_update_trainingjob(description, pipeline_name, experiment_name,
- feature_list, arguments, query_filter, False,
+ featuregroup_name, arguments, query_filter, False,
enable_versioning, pipeline_version,
datalake_source, trainingjob_name, PS_DB_OBJ,
notification_url, _measurement, bucket)