" data['metrics'] = []\n",
" data['metrics'].append({'Accuracy': str(np.mean(np.absolute(np.asarray(xx)-np.asarray(yy))<5))})\n",
"\n",
- "# update artifact version\n",
+ " # update artifact version\n",
" new_artifactversion =\"\"\n",
" if modelinfo[\"modelLocation\"] != \"\":\n",
" new_artifactversion = \"1.1.0\"\n",
" minor+=1\n",
" new_artifactversion = f\"{major}.{minor}.{patch}\"\n",
" \n",
- " # update the new artifact version in mme\n",
- " url = f\"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{new_artifactversion}\"\n",
- " updated_model_info= requests.post(url).json()\n",
- " print(updated_model_info)\n",
- " \n",
" print(\"uploading keras model to MME\")\n",
" mm_sdk.upload_model(\"./retrain/keras_model\", modelname + \"_keras\", modelversion, new_artifactversion)\n",
" print(\"Saved keras format\")\n",
" mm_sdk.upload_model(\"./retrain/saved_model\", modelname, modelversion, new_artifactversion)\n",
- " print(\"Saved savedmodel format\")"
+ " print(\"Saved savedmodel format\")\n",
+ " \n",
+ " # update the new artifact version in mme\n",
+ " url = f\"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{new_artifactversion}\"\n",
+ " updated_model_info= requests.post(url).json()\n",
+ " print(updated_model_info)"
]
},
{
"pipeline_file = file_name+'.yaml'\n",
"requests.post(\"http://tm.traininghost:32002/pipelines/{}/upload\".format(pipeline_name), files={'file':open(pipeline_file,'rb')})"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
" data['metrics'] = []\n",
" data['metrics'].append({'Accuracy': str(np.mean(np.absolute(np.asarray(xx)-np.asarray(yy))<5))})\n",
" \n",
- "# as new artifact after training will always be 1.0.0\n",
+ " # new artifact after training will always be 1.0.0\n",
" artifactversion=\"1.0.0\"\n",
- " url = f\"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{artifactversion}\"\n",
- " updated_model_info= requests.post(url).json()\n",
- " print(updated_model_info)\n",
" \n",
" #featurepath is a combination of <feature_group>_<trainingjob_Id>\n",
" trainingjob_id = featurepath.split('_')[-1]\n",
" mm_sdk.upload_model(\"./keras_model\", modelname + \"_keras\", modelversion, artifactversion)\n",
" print(\"Saved keras format\")\n",
" mm_sdk.upload_model(\"./saved_model\", modelname, modelversion, artifactversion)\n",
- " print(\"Saved savedmodel format\")"
+ " print(\"Saved savedmodel format\")\n",
+ " \n",
+ " # update the new artifact version in mme\n",
+ " url = f\"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{artifactversion}\"\n",
+ " updated_model_info= requests.post(url).json()\n",
+ " print(updated_model_info)"
]
},
{
"pipeline_file = file_name+'.yaml'\n",
"requests.post(\"http://tm.traininghost:32002/pipelines/{}/upload\".format(pipeline_name), files={'file':open(pipeline_file,'rb')})"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {