--- /dev/null
+# ==================================================================================
+#
+# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+# ==================================================================================
+
+
+import kfp
+import kfp.dsl as dsl
+from kfp.dsl import InputPath, OutputPath
+from kfp.dsl import component as component
+from kfp import kubernetes
+
+BASE_IMAGE = "traininghost/pipelineimage:latest"
+
+@component(base_image=BASE_IMAGE)
+def train_export_model(featurepath: str, epochs: str, modelname: str, modelversion:str):
+
+ import tensorflow as tf
+ from numpy import array
+ from tensorflow.keras.models import Sequential
+ from tensorflow.keras.layers import Dense
+ from tensorflow.keras.layers import Flatten, Dropout, Activation
+ from tensorflow.keras.layers import LSTM
+ import numpy as np
+ import requests
+ print("numpy version")
+ print(np.__version__)
+ import pandas as pd
+ import os
+ from featurestoresdk.feature_store_sdk import FeatureStoreSdk
+ from modelmetricsdk.model_metrics_sdk import ModelMetricsSdk
+
+ fs_sdk = FeatureStoreSdk()
+ mm_sdk = ModelMetricsSdk()
+ print("featurepath is: ", featurepath)
+ features = fs_sdk.get_features(featurepath, ['pdcpBytesDl','pdcpBytesUl'])
+ print("Dataframe:")
+ print(features)
+
+ features_cellc2b2 = features
+ print(features_cellc2b2)
+ print('Previous Data Types are --> ', features_cellc2b2.dtypes)
+ features_cellc2b2["pdcpBytesDl"] = pd.to_numeric(features_cellc2b2["pdcpBytesDl"], downcast="float")
+ features_cellc2b2["pdcpBytesUl"] = pd.to_numeric(features_cellc2b2["pdcpBytesUl"], downcast="float")
+ print('New Data Types are --> ', features_cellc2b2.dtypes)
+
+ features_cellc2b2 = features_cellc2b2[['pdcpBytesDl', 'pdcpBytesUl']]
+
+ def split_series(series, n_past, n_future):
+ X, y = list(), list()
+ for window_start in range(len(series)):
+ past_end = window_start + n_past
+ future_end = past_end + n_future
+ if future_end > len(series):
+ break
+ # slicing the past and future parts of the window
+ past, future = series[window_start:past_end, :], series[past_end:future_end, :]
+ X.append(past)
+ y.append(future)
+ return np.array(X), np.array(y)
+ X, y = split_series(features_cellc2b2.values,10, 1)
+ X = X.reshape((X.shape[0], X.shape[1],X.shape[2]))
+ y = y.reshape((y.shape[0], y.shape[2]))
+ print(X.shape)
+ print(y.shape)
+
+ model = Sequential()
+ model.add(LSTM(units = 150, activation="tanh" ,return_sequences = True, input_shape = (X.shape[1], X.shape[2])))
+
+ model.add(LSTM(units = 150, return_sequences = True,activation="tanh"))
+
+ model.add(LSTM(units = 150,return_sequences = False,activation="tanh" ))
+
+ model.add((Dense(units = X.shape[2])))
+
+ model.compile(loss='mse', optimizer='adam',metrics=['mse'])
+ model.summary()
+
+ model.fit(X, y, batch_size=10,epochs=int(epochs), validation_split=0.2)
+ yhat = model.predict(X, verbose = 0)
+
+
+ xx = y
+ yy = yhat
+ model_save_filepath = "./"
+ model.export(model_save_filepath)
+
+ import json
+ data = {}
+ data['metrics'] = []
+ data['metrics'].append({'Accuracy': str(np.mean(np.absolute(np.asarray(xx)-np.asarray(yy))<5))})
+
+ #as new artifact after training will always be 1.0.0
+ artifactversion="1.0.0"
+ url = f"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{artifactversion}"
+ updated_model_info= requests.post(url).json()
+ print(updated_model_info)
+
+ #featurepath is a combination of <feature_group>_<trainingjob_Id>
+ trainingjob_id = featurepath.split('_')[-1]
+ mm_sdk.upload_metrics(data, trainingjob_id)
+ print("Model-metric : ", mm_sdk.get_metrics(trainingjob_id))
+ mm_sdk.upload_model(model_save_filepath, modelname, modelversion, artifactversion)
+
+
+
+@dsl.pipeline(
+ name="qoe Pipeline",
+ description="qoe",
+)
+def super_model_pipeline(
+ featurepath: str, epochs: str, modelname: str, modelversion:str):
+
+ trainop=train_export_model(featurepath=featurepath, epochs=epochs, modelname=modelname, modelversion=modelversion)
+ trainop.set_caching_options(False)
+ kubernetes.set_image_pull_policy(trainop, "IfNotPresent")
+
+
+pipeline_func = super_model_pipeline
+file_name = "qoe_model_pipeline"
+
+kfp.compiler.Compiler().compile(pipeline_func,
+ '{}.yaml'.format(file_name))
+
+
+import requests
+pipeline_name="qoe_Pipeline"
+pipeline_file = file_name+'.yaml'
+requests.post("http://tm.traininghost:32002/pipelines/{}/upload".format(pipeline_name), files={'file':open(pipeline_file,'rb')})
\ No newline at end of file