# as new artifact after training will always be 1.0.0
artifactversion="1.0.0"
- url = f"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{artifactversion}"
- updated_model_info= requests.post(url).json()
- print(updated_model_info)
#featurepath is a combination of <feature_group>_<trainingjob_Id>
trainingjob_id = featurepath.split('_')[-1]
print("Saved keras format")
mm_sdk.upload_model("./saved_model", modelname, modelversion, artifactversion)
print("Saved savedmodel format")
+
+ url = f"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{artifactversion}"
+ updated_model_info= requests.post(url).json()
+ print(updated_model_info)
@dsl.pipeline(
name="qoe Pipeline",
minor+=1
new_artifactversion = f"{major}.{minor}.{patch}"
- # update the new artifact version in mme
- url = f"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{new_artifactversion}"
- updated_model_info= requests.post(url).json()
- print(updated_model_info)
-
print("uploading keras model to MME")
mm_sdk.upload_model("./retrain/keras_model", modelname + "_keras", modelversion, new_artifactversion)
print("Saved keras format")
mm_sdk.upload_model("./retrain/saved_model", modelname, modelversion, new_artifactversion)
print("Saved savedmodel format")
+ # update the new artifact version in mme
+ url = f"http://modelmgmtservice.traininghost:8082/ai-ml-model-registration/v1/model-registrations/updateArtifact/{modelname}/{modelversion}/{new_artifactversion}"
+ updated_model_info= requests.post(url).json()
+ print(updated_model_info)
+
@dsl.pipeline(
name="qoe Pipeline",
description="qoe",