"outputs": [],
"source": [
"@component(base_image=BASE_IMAGE)\n",
- "def train_export_model(featurepath: str, epochs: str, modelname: str, modelversion:str, artifactversion:str):\n",
+ "def train_export_model(featurepath: str, epochs: str, modelname: str, modelversion:str, modellocation:str):\n",
" \n",
" import tensorflow as tf\n",
" from numpy import array\n",
" from tensorflow.keras.layers import Flatten, Dropout, Activation\n",
" from tensorflow.keras.layers import LSTM\n",
" import numpy as np\n",
+ " import requests\n",
" print(\"numpy version\")\n",
" print(np.__version__)\n",
" import pandas as pd\n",
" data['metrics'] = []\n",
" data['metrics'].append({'Accuracy': str(np.mean(np.absolute(np.asarray(xx)-np.asarray(yy))<5))})\n",
" \n",
+ "# as new artifact after training will always be 1.0.0\n",
" artifactversion=\"1.0.0\"\n",
+ " url = f\"http://modelmgmtservice.traininghost:8082/model-registrations/updateArtifact/{modelname}/{modelversion}/{artifactversion}\"\n",
+ " updated_model_info= requests.post(url).json()\n",
+ " print(updated_model_info)\n",
" \n",
" mm_sdk.upload_metrics(data, modelname, modelversion,artifactversion)\n",
- " mm_sdk.upload_model(\"./\", modelname, modelversion, artifactversion)\n"
+ " mm_sdk.upload_model(\"./\", modelname, modelversion, artifactversion)"
]
},
{
" description=\"qoe\",\n",
")\n",
"def super_model_pipeline( \n",
- " featurepath: str, epochs: str, modelname: str, modelversion:str, artifactversion:str):\n",
+ " featurepath: str, epochs: str, modelname: str, modelversion:str, modellocation:str):\n",
" \n",
- " trainop=train_export_model(featurepath=featurepath, epochs=epochs, modelname=modelname, modelversion=modelversion, artifactversion=artifactversion)\n",
+ " trainop=train_export_model(featurepath=featurepath, epochs=epochs, modelname=modelname, modelversion=modelversion, modellocation=modellocation)\n",
" trainop.set_caching_options(False)\n",
" kubernetes.set_image_pull_policy(trainop, \"IfNotPresent\")"
]