self.client = trainingmgr_main.APP.test_client(self)
self.logger = trainingmgr_main.LOGGER
- @patch('trainingmgr.trainingmgr_main.get_info_by_version',return_value=[('usecase7', 'auto test', '*', 'prediction with model name', 'Default', '{"arguments": {"epochs": "1", "usecase": "usecase7"}}', 'Enb=20 and Cellnum=6', datetime.datetime(2022, 9, 20,11, 40, 30), '7d09c0bf-7575-4475-86ff-5573fb3c4716', '{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}', datetime.datetime(2022, 9, 20, 11, 42, 20), 1, True, 'Near RT RIC', '{"datalake_source": {"CassandraSource": {}}}', '{"datalake_source": {"CassandraSource": {}}}','http://10.0.0.47:32002/model/usecase7/1/Model.zip','','','','','')])
+ @patch('trainingmgr.trainingmgr_main.get_info_by_version',return_value=[('usecase7', 'auto test', '*', 'prediction with model name', 'Default', '{"arguments": {"epochs": "1", "usecase": "usecase7"}}', 'Enb=20 and Cellnum=6', datetime.datetime(2022, 9, 20,11, 40, 30), '7d09c0bf-7575-4475-86ff-5573fb3c4716', '{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}', datetime.datetime(2022, 9, 20, 11, 42, 20), 1, True, 'Near RT RIC', '{"datalake_source": {"CassandraSource": {}}}', '{"datalake_source": {"CassandraSource": {}}}','http://10.0.0.47:32002/model/usecase7/1/Model.zip','','','','','',False,'','')])
@patch('trainingmgr.trainingmgr_main.get_metrics',return_value={"metrics": [{"Accuracy": "0.0"}]})
@patch('trainingmgr.trainingmgr_main.get_one_key',return_value='cassandra')
def test_get_trainingjob_by_name_version(self,mock1,mock2,mock3):
usecase_name = "usecase7"
version = "1"
response = self.client.get("/trainingjobs/{}/{}".format(usecase_name, version))
- expected_data = b'{"trainingjob": {"trainingjob_name": "usecase7", "description": "auto test", "feature_list": "*", "pipeline_name": "prediction with model name", "experiment_name": "Default", "arguments": {"epochs": "1", "usecase": "usecase7"}, "query_filter": "Enb=20 and Cellnum=6", "creation_time": "2022-09-20 11:40:30", "run_id": "7d09c0bf-7575-4475-86ff-5573fb3c4716", "steps_state": {"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}, "updation_time": "2022-09-20 11:42:20", "version": 1, "enable_versioning": true, "pipeline_version": "Near RT RIC", "datalake_source": "cassandra", "model_url": "{\\"datalake_source\\": {\\"CassandraSource\\": {}}}", "notification_url": "http://10.0.0.47:32002/model/usecase7/1/Model.zip", "_measurement": "", "bucket": "", "accuracy": {"metrics": [{"Accuracy": "0.0"}]}}}'
+ expected_data = b'{"trainingjob": {"trainingjob_name": "usecase7", "description": "auto test", "feature_list": "*", "pipeline_name": "prediction with model name", "experiment_name": "Default", "arguments": {"epochs": "1", "usecase": "usecase7"}, "query_filter": "Enb=20 and Cellnum=6", "creation_time": "2022-09-20 11:40:30", "run_id": "7d09c0bf-7575-4475-86ff-5573fb3c4716", "steps_state": {"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}, "updation_time": "2022-09-20 11:42:20", "version": 1, "enable_versioning": true, "pipeline_version": "Near RT RIC", "datalake_source": "cassandra", "model_url": "{\\"datalake_source\\": {\\"CassandraSource\\": {}}}", "notification_url": "http://10.0.0.47:32002/model/usecase7/1/Model.zip", "_measurement": "", "bucket": "", "is_mme": "", "model_name": "", "model_info": false, "accuracy": {"metrics": [{"Accuracy": "0.0"}]}}}'
assert response.content_type == "application/json", "not equal content type"
assert response.status_code == status.HTTP_200_OK, "not equal code"