usecase_name = "usecase7"
version = "1"
response = self.client.get("/trainingjobs/{}/{}".format(usecase_name, version))
- expected_data = b'{"trainingjob": {"trainingjob_name": "usecase7", "description": "auto test", "feature_list": "*", "pipeline_name": "prediction with model name", "experiment_name": "Default", "arguments": {"epochs": "1", "usecase": "usecase7"}, "query_filter": "Enb=20 and Cellnum=6", "creation_time": "2022-09-20 11:40:30", "run_id": "7d09c0bf-7575-4475-86ff-5573fb3c4716", "steps_state": {"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}, "updation_time": "2022-09-20 11:42:20", "version": 1, "enable_versioning": true, "pipeline_version": "Near RT RIC", "datalake_source": "cassandra", "model_url": "{\\"datalake_source\\": {\\"CassandraSource\\": {}}}", "notification_url": "http://10.0.0.47:32002/model/usecase7/1/Model.zip", "_measurement": "", "bucket": "", "is_mme": "", "model_name": "", "model_info": false, "accuracy": {"metrics": [{"Accuracy": "0.0"}]}}}'
-
- assert response.content_type == "application/json", "not equal content type"
+ expected_data = b'{"trainingjob": {"trainingjob_name": "usecase7", "description": "auto test", "feature_list": "*", "pipeline_name": "prediction with model name", "experiment_name": "Default", "arguments": {"epochs": "1", "usecase": "usecase7"}, "query_filter": "Enb=20 and Cellnum=6", "creation_time": "2022-09-20 11:40:30", "run_id": "7d09c0bf-7575-4475-86ff-5573fb3c4716", "steps_state": {"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}, "updation_time": "2022-09-20 11:42:20", "version": 1, "enable_versioning": true, "pipeline_version": "Near RT RIC", "datalake_source": "cassandra", "model_url": "{\\"datalake_source\\": {\\"CassandraSource\\": {}}}", "notification_url": "http://10.0.0.47:32002/model/usecase7/1/Model.zip", "is_mme": "", "model_name": "", "model_info": "", "accuracy": {"metrics": [{"Accuracy": "0.0"}]}}}'
assert response.status_code == status.HTTP_200_OK, "not equal code"
assert response.data == expected_data, "not equal data"
url for downloading model
notification_url: str
url of notification server
- _measurement: str
- _measurement of influx db datalake
- bucket: str
- bucket name of influx db datalake
is_mme: boolean
whether the mme is enabled
model_name: str
"datalake_source": get_one_key(json.loads(trainingjob_info[14])['datalake_source']),
"model_url": trainingjob_info[15],
"notification_url": trainingjob_info[16],
- "_measurement": trainingjob_info[17],
- "bucket": trainingjob_info[18],
- "is_mme": trainingjob_info[20],
- "model_name": trainingjob_info[21],
- "model_info": trainingjob_info[22],
+ "is_mme": trainingjob_info[17],
+ "model_name": trainingjob_info[18],
+ "model_info": trainingjob_info[19],
"accuracy": data
}
response_data = {"trainingjob": dict_data}