adding the latest kubeflow compatible qoe pipeline 32/13032/1
authorrajdeep11 <rajdeep.sin@samsung.com>
Wed, 26 Jun 2024 12:10:16 +0000 (17:40 +0530)
committerrajdeep11 <rajdeep.sin@samsung.com>
Wed, 26 Jun 2024 12:11:16 +0000 (17:41 +0530)
Issue-id: AIMLFW-102

Change-Id: Ife0567a02bfdbfc1d2b6979b61c5d3a264613d1a
Signed-off-by: rajdeep11 <rajdeep.sin@samsung.com>
samples/qoe/qoe_pipeline_j_release.py [new file with mode: 0644]

diff --git a/samples/qoe/qoe_pipeline_j_release.py b/samples/qoe/qoe_pipeline_j_release.py
new file mode 100644 (file)
index 0000000..659c9a2
--- /dev/null
@@ -0,0 +1,103 @@
+import kfp
+import kfp.dsl as dsl
+from kfp.dsl import InputPath, OutputPath
+from kfp.dsl import component as component
+
+
+@component(base_image="traininghost/pipelineimage:latest")
+def train_export_model(trainingjobName: str, epochs: str, version: str):
+    
+    import tensorflow as tf
+    from numpy import array
+    from tensorflow.keras.models import Sequential
+    from tensorflow.keras.layers import Dense
+    from tensorflow.keras.layers import Flatten, Dropout, Activation
+    from tensorflow.keras.layers import LSTM
+    import numpy as np
+    print("numpy version")
+    print(np.__version__)
+    import pandas as pd
+    import os
+    from featurestoresdk.feature_store_sdk import FeatureStoreSdk
+    from modelmetricsdk.model_metrics_sdk import ModelMetricsSdk
+    
+    fs_sdk = FeatureStoreSdk()
+    mm_sdk = ModelMetricsSdk()
+    print("job name is: ", trainingjobName)
+    features = fs_sdk.get_features(trainingjobName, ['pdcpBytesDl','pdcpBytesUl'])
+    print("Dataframe:")
+    print(features)
+
+    features_cellc2b2 = features
+    print(features_cellc2b2)
+    print('Previous Data Types are --> ', features_cellc2b2.dtypes)
+    features_cellc2b2["pdcpBytesDl"] = pd.to_numeric(features_cellc2b2["pdcpBytesDl"], downcast="float")
+    features_cellc2b2["pdcpBytesUl"] = pd.to_numeric(features_cellc2b2["pdcpBytesUl"], downcast="float")
+    print('New Data Types are --> ', features_cellc2b2.dtypes)
+    
+    features_cellc2b2 = features_cellc2b2[['pdcpBytesDl', 'pdcpBytesUl']]
+    
+    def split_series(series, n_past, n_future):
+        X, y = list(), list()
+        for window_start in range(len(series)):
+            past_end = window_start + n_past
+            future_end = past_end + n_future
+            if future_end > len(series):
+                break
+            # slicing the past and future parts of the window
+            past, future = series[window_start:past_end, :], series[past_end:future_end, :]
+            X.append(past)
+            y.append(future)
+        return np.array(X), np.array(y)
+    X, y = split_series(features_cellc2b2.values,10, 1)
+    X = X.reshape((X.shape[0], X.shape[1],X.shape[2]))
+    y = y.reshape((y.shape[0], y.shape[2]))
+    print(X.shape)
+    print(y.shape)
+    
+    model = Sequential()
+    model.add(LSTM(units = 150, activation="tanh" ,return_sequences = True, input_shape = (X.shape[1], X.shape[2])))
+
+    model.add(LSTM(units = 150, return_sequences = True,activation="tanh"))
+
+    model.add(LSTM(units = 150,return_sequences = False,activation="tanh" ))
+
+    model.add((Dense(units = X.shape[2])))
+    
+    model.compile(loss='mse', optimizer='adam',metrics=['mse'])
+    model.summary()
+    
+    model.fit(X, y, batch_size=10,epochs=int(epochs), validation_split=0.2)
+    yhat = model.predict(X, verbose = 0)
+
+    
+    xx = y
+    yy = yhat
+    model.save("./")
+    import json
+    data = {}
+    data['metrics'] = []
+    data['metrics'].append({'Accuracy': str(np.mean(np.absolute(np.asarray(xx)-np.asarray(yy))<5))})
+    
+    mm_sdk.upload_metrics(data, trainingjobName, version)
+    mm_sdk.upload_model("./", trainingjobName, version)
+
+
+@dsl.pipeline(
+    name="qoe Pipeline",
+    description="qoe",
+)
+def super_model_pipeline( 
+    trainingjob_name: str, epochs: str, version: str):
+    
+    trainop=train_export_model(trainingjobName=trainingjob_name, epochs=epochs, version=version)
+    trainop.set_caching_options(False)
+    kubernetes.set_image_pull_policy(trainop, "IfNotPresent")
+
+
+if __name__ == '__main__':
+    # Compiling the pipeline
+       pipeline_func = super_model_pipeline
+       file_name = "qoe_model_pipeline"
+       kfp.compiler.Compiler().compile(pipeline_func, file_name + '.yaml')
+