self.logger = trainingmgr_main.LOGGER
#test_positive_1
- db_result = [('mynetwork', 'testing', '*', 'testing_pipeline', 'Default', '{"arguments": {"epochs": "1", "trainingjob_name": "mynetwork"}}', '', datetime.datetime(2023, 2, 9, 9, 2, 11, 13916), 'No data available', '{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "IN_PROGRESS", "TRAINING": "NOT_STARTED", "TRAINING_AND_TRAINED_MODEL": "NOT_STARTED", "TRAINED_MODEL": "NOT_STARTED"}', datetime.datetime(2023, 2, 9, 9, 2, 11, 13916), 1, False, '2', '{"datalake_source": {"InfluxSource": {}}}', 'No data available.', '', 'liveCell', 'UEData', False, False, '','')]
+ db_result = [('my_testing_new_7', 'testing', 'testing_influxdb', 'pipeline_kfp2.2.0_5', 'Default', '{"arguments": {"epochs": "1", "trainingjob_name": "my_testing_new_7"}}', '', datetime.datetime(2024, 6, 21, 8, 57, 48, 408725), '432516c9-29d2-4f90-9074-407fe8f77e4f', '{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}', datetime.datetime(2024, 6, 21, 9, 1, 54, 388278), 1, False, 'pipeline_kfp2.2.0_5', '{"datalake_source": {"InfluxSource": {}}}', 'http://10.0.0.10:32002/model/my_testing_new_7/1/Model.zip', '', False, False, '', '')]
mocked_TRAININGMGR_CONFIG_OBJ=mock.Mock(name="TRAININGMGR_CONFIG_OBJ")
attrs_TRAININGMGR_CONFIG_OBJ = {'my_ip.return_value': '123'}
mocked_TRAININGMGR_CONFIG_OBJ.configure_mock(**attrs_TRAININGMGR_CONFIG_OBJ)
continue
if results:
-
- if results[0][19]:
+ if results[0][17]:
not_possible_to_retrain.append(trainingjob_name)
LOGGER.debug("Failed to retrain because deletion in progress" + \
"(trainingjob_name is " + trainingjob_name + ")")
arguments = json.loads(results[0][5])['arguments']
query_filter = results[0][6]
datalake_source = get_one_key(json.loads(results[0][14])["datalake_source"])
- _measurement = results[0][17]
- bucket = results[0][18]
- is_mme=results[0][20]
- model_name=results[0][21]
- model_info=results[0][22]
+ is_mme=results[0][18]
+ model_name=results[0][19]
+ model_info=results[0][20]
notification_url = ""
if "notification_url" in obj:
add_update_trainingjob(description, pipeline_name, experiment_name, featuregroup_name,
arguments, query_filter, False, enable_versioning,
pipeline_version, datalake_source, trainingjob_name,
- PS_DB_OBJ, _measurement=_measurement,
- bucket=bucket, is_mme=is_mme, model_name=model_name, model_info=model_info)
+ PS_DB_OBJ,is_mme=is_mme, model_name=model_name, model_info=model_info)
except Exception as err:
not_possible_to_retrain.append(trainingjob_name)
LOGGER.debug(str(err) + "(training job is " + trainingjob_name + ")")