assert response.data == expected_data
assert response.status_code == status.HTTP_201_CREATED, "Return status code NOT equal"
+ model_info_json={'model-name': 'qoe_93', 'rapp-id': 'rapp_1', 'meta-info': {'accuracy': '90', 'feature-list': ['*'], 'model-type': 'timeseries'}}
+ db_result_fg=[('group','*','')]
+ mocked_TRAININGMGR_CONFIG_OBJ=mock.Mock(name="TRAININGMGR_CONFIG_OBJ")
+ attrs_TRAININGMGR_CONFIG_OBJ = {'pipeline.return_value':''}
+ mocked_TRAININGMGR_CONFIG_OBJ.configure_mock(**attrs_TRAININGMGR_CONFIG_OBJ)
+ @patch('trainingmgr.trainingmgr_main.validate_trainingjob_name', return_value = False)
+ @patch('trainingmgr.trainingmgr_main.check_trainingjob_data', return_value = ("group1", 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1',True, ""))
+ @patch('trainingmgr.trainingmgr_main.TRAININGMGR_CONFIG_OBJ', return_value = mocked_TRAININGMGR_CONFIG_OBJ)
+ @patch('trainingmgr.trainingmgr_main.get_model_info', return_value=model_info_json)
+ @patch('trainingmgr.trainingmgr_main.json.loads',return_value={'timeseries':''})
+ @patch('trainingmgr.trainingmgr_main.get_feature_groups_db', return_value=db_result_fg)
+ @patch('trainingmgr.trainingmgr_main.add_update_trainingjob')
+ def test_trainingjob_operations2(self,mock1,mock2, mock3, mock4, mock5, mock6, mock7):
+ trainingmgr_main.LOGGER.debug("******* test_trainingjob_operations post *******")
+ trainingjob_req = {
+ "trainingjob_name":"usecase1",
+ "pipeline_name":"qoe Pipeline lat v2",
+ "experiment_name":"Default",
+ "featureGroup_name":"group",
+ "query_filter":"",
+ "arguments":{
+ "epochs":"1",
+ "trainingjob_name":"usecase1"
+ },
+ "enable_versioning":False,
+ "description":"uc1",
+ "pipeline_version":"3",
+ "datalake_source":"InfluxSource",
+ "_measurement":"liveCell",
+ "bucket":"UEData",
+ "is_mme":True,
+ "model_name": ""
+ }
+ expected_data = b'{"result": "Information stored in database."}'
+ response = self.client.post("/trainingjobs/{}".format("usecase1"),
+ data=json.dumps(trainingjob_req),
+ content_type="application/json")
+ trainingmgr_main.LOGGER.debug(response.data)
+ assert response.data == expected_data
+ assert response.status_code == status.HTTP_201_CREATED, "Return status code NOT equal"
+
+ model_info_json={'model-name': 'qoe_93', 'rapp-id': 'rapp_1', 'meta-info': {'accuracy': '90', 'feature-list': ['*'], 'model-type': 'timeseries'}}
+ db_result_fg=[('group','*','')]
+ mocked_TRAININGMGR_CONFIG_OBJ=mock.Mock(name="TRAININGMGR_CONFIG_OBJ")
+ attrs_TRAININGMGR_CONFIG_OBJ = {'pipeline.return_value':''}
+ mocked_TRAININGMGR_CONFIG_OBJ.configure_mock(**attrs_TRAININGMGR_CONFIG_OBJ)
+ @patch('trainingmgr.trainingmgr_main.validate_trainingjob_name', return_value = False)
+ @patch('trainingmgr.trainingmgr_main.check_trainingjob_data', return_value = ("group1", 'unittest', 'qoe', 'experiment1', 'arguments1', 'query1', True, 1, 'cassandra db', 2, 'bucket1',True, ""))
+ @patch('trainingmgr.trainingmgr_main.TRAININGMGR_CONFIG_OBJ', return_value = mocked_TRAININGMGR_CONFIG_OBJ)
+ @patch('trainingmgr.trainingmgr_main.get_model_info', return_value=model_info_json)
+ @patch('trainingmgr.trainingmgr_main.json.loads',return_value='')
+ @patch('trainingmgr.trainingmgr_main.get_feature_groups_db', return_value=db_result_fg)
+ @patch('trainingmgr.trainingmgr_main.add_update_trainingjob')
+ def test_negative_trainingjob_operations2(self,mock1,mock2, mock3, mock4, mock5, mock6, mock7):
+ trainingmgr_main.LOGGER.debug("******* test_trainingjob_operations post *******")
+ trainingjob_req = {
+ "trainingjob_name":"usecase1",
+ "pipeline_name":"qoe Pipeline lat v2",
+ "experiment_name":"Default",
+ "featureGroup_name":"group",
+ "query_filter":"",
+ "arguments":{
+ "epochs":"1",
+ "trainingjob_name":"usecase1"
+ },
+ "enable_versioning":False,
+ "description":"uc1",
+ "pipeline_version":"3",
+ "datalake_source":"InfluxSource",
+ "_measurement":"liveCell",
+ "bucket":"UEData",
+ "is_mme":True,
+ "model_name": ""
+ }
+ expected_data = b'{"Exception": "Doesn\'t support the model type"}'
+ response = self.client.post("/trainingjobs/{}".format("usecase1"),
+ data=json.dumps(trainingjob_req),
+ content_type="application/json")
+ trainingmgr_main.LOGGER.debug(response.data)
+ assert response.data == expected_data
+ assert response.status_code == status.HTTP_500_INTERNAL_SERVER_ERROR, "Return status code NOT equal"
+
db_result = [('usecase1', 'uc1', '*', 'qoe Pipeline lat v2', 'Default', '{"arguments": {"epochs": "1", "trainingjob_name": "usecase1"}}',
'', datetime.datetime(2022, 10, 12, 10, 0, 59, 923588), '51948a12-aee9-42e5-93a0-b8f4a15bca33',
'{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FAILED"}',