changing pipeline for the modelName and ModelVersion and artifactversion 27/13827/1
authorrajdeep11 <rajdeep.sin@samsung.com>
Sat, 7 Dec 2024 08:25:38 +0000 (13:55 +0530)
committerrajdeep11 <rajdeep.sin@samsung.com>
Sat, 7 Dec 2024 08:25:38 +0000 (13:55 +0530)
and featurepath

Change-Id: Iffd7b383ac18f96bb6eac873aebdd347cd95c208
Signed-off-by: rajdeep11 <rajdeep.sin@samsung.com>
kf-pipelines/qoe-pipeline.ipynb

index 1cb2c88..378eff4 100644 (file)
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
     "@component(base_image=BASE_IMAGE)\n",
-    "def train_export_model(trainingjobName: str, epochs: str, version: str):\n",
+    "def train_export_model(featurepath: str, epochs: str, modelname: str, modelversion:str, artifactversion:str):\n",
     "    \n",
     "    import tensorflow as tf\n",
     "    from numpy import array\n",
@@ -47,8 +47,8 @@
     "    \n",
     "    fs_sdk = FeatureStoreSdk()\n",
     "    mm_sdk = ModelMetricsSdk()\n",
-    "    print(\"job name is: \", trainingjobName)\n",
-    "    features = fs_sdk.get_features(trainingjobName, ['pdcpBytesDl','pdcpBytesUl'])\n",
+    "    print(\"featurepath is: \", featurepath)\n",
+    "    features = fs_sdk.get_features(featurepath, ['pdcpBytesDl','pdcpBytesUl'])\n",
     "    print(\"Dataframe:\")\n",
     "    print(features)\n",
     "\n",
     "    data['metrics'] = []\n",
     "    data['metrics'].append({'Accuracy': str(np.mean(np.absolute(np.asarray(xx)-np.asarray(yy))<5))})\n",
     "    \n",
-    "    mm_sdk.upload_metrics(data, trainingjobName, version)\n",
-    "    mm_sdk.upload_model(\"./\", trainingjobName, version)\n"
+    "    artifactversion=\"1.0.0\"\n",
+    "    \n",
+    "    mm_sdk.upload_metrics(data, modelname, modelversion,artifactversion)\n",
+    "    mm_sdk.upload_model(\"./\", modelname, modelversion, artifactversion)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
     "    description=\"qoe\",\n",
     ")\n",
     "def super_model_pipeline( \n",
-    "    trainingjob_name: str, epochs: str, version: str):\n",
+    "    featurepath: str, epochs: str, modelname: str, modelversion:str, artifactversion:str):\n",
     "    \n",
-    "    trainop=train_export_model(trainingjobName=trainingjob_name, epochs=epochs, version=version)\n",
+    "    trainop=train_export_model(featurepath=featurepath, epochs=epochs, modelname=modelname, modelversion=modelversion, artifactversion=artifactversion)\n",
     "    trainop.set_caching_options(False)\n",
     "    kubernetes.set_image_pull_policy(trainop, \"IfNotPresent\")"
    ]