assert response.data == expected_data
assert response.status_code == status.HTTP_500_INTERNAL_SERVER_ERROR, "Return status code NOT equal"
- db_result = [('usecase1', 'uc1', '*', 'qoe Pipeline lat v2', 'Default', '{"arguments": {"epochs": "1", "trainingjob_name": "usecase1"}}',
- '', datetime.datetime(2022, 10, 12, 10, 0, 59, 923588), '51948a12-aee9-42e5-93a0-b8f4a15bca33',
- '{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FAILED"}',
- datetime.datetime(2022, 10, 12, 10, 2, 31, 888830), 1, False, '3', '{"datalake_source": {"InfluxSource": {}}}', 'No data available.', '', 'liveCell', 'UEData', False, False, "","")]
+ db_result = [('my_testing_new_7', 'testing', 'testing_influxdb', 'pipeline_kfp2.2.0_5', 'Default', '{"arguments": {"epochs": "1", "trainingjob_name": "my_testing_new_7"}}', '', datetime.datetime(2024, 6, 21, 8, 57, 48, 408725), '432516c9-29d2-4f90-9074-407fe8f77e4f', '{"DATA_EXTRACTION": "FINISHED", "DATA_EXTRACTION_AND_TRAINING": "FINISHED", "TRAINING": "FINISHED", "TRAINING_AND_TRAINED_MODEL": "FINISHED", "TRAINED_MODEL": "FINISHED"}', datetime.datetime(2024, 6, 21, 9, 1, 54, 388278), 1, False, 'pipeline_kfp2.2.0_5', '{"datalake_source": {"InfluxSource": {}}}', 'http://10.0.0.10:32002/model/my_testing_new_7/1/Model.zip', '', False, False, '', '')]
+
- training_data = ('','','','','','','','','','','', '','')
+ training_data = ('','','','','','','','','',False,'')
@patch('trainingmgr.trainingmgr_main.validate_trainingjob_name', return_value = True)
@patch('trainingmgr.trainingmgr_main.get_trainingjob_info_by_name', return_value = db_result)
@patch('trainingmgr.trainingmgr_main.check_trainingjob_data', return_value = training_data)
def test_trainingjob_operations_put(self,mock1,mock2,mock3,mock4):
trainingmgr_main.LOGGER.debug("******* test_trainingjob_operations_put *******")
trainingjob_req = {
- "trainingjob_name":"usecase1",
- "pipeline_name":"qoe Pipeline lat v2",
- "experiment_name":"Default",
- "featureGroup_name":"group",
- "query_filter":"",
- "arguments":{
- "epochs":"1",
- "trainingjob_name":"usecase1"
- },
- "enable_versioning":False,
- "description":"updated",
- "pipeline_version":"3",
- "datalake_source":"InfluxSource",
- "_measurement":"liveCell",
- "bucket":"UEData",
- "is_mme": False,
- "model_name":""
- }
+ "trainingjob_name": "my_testing_new_7",
+ "is_mme": False,
+ "model_name": False,
+ "pipeline_name": "pipeline",
+ "experiment_name": "Default",
+ "featureGroup_name": "testing",
+ "query_filter": "",
+ "arguments": {
+ "epochs": "1",
+ "trainingjob_name": "my_testing"
+ },
+ "enable_versioning": False,
+ "description": "testing",
+ "pipeline_version": "pipeline",
+ "datalake_source": "InfluxSource"
+ }
expected_data = 'Information updated in database'
- response = self.client.put("/trainingjobs/{}".format("usecase1"),
+ response = self.client.put("/trainingjobs/{}".format("my_testing_new_7"),
data=json.dumps(trainingjob_req),
content_type="application/json")
trainingmgr_main.LOGGER.debug(response.data)
results = None
results = get_trainingjob_info_by_name(trainingjob_name, PS_DB_OBJ)
if results:
- if results[0][19]:
+ if results[0][17]:
raise TMException("Failed to process request for trainingjob(" + trainingjob_name + ") " + \
" deletion in progress")
if (get_one_word_status(json.loads(results[0][9]))
(featuregroup_name, description, pipeline_name, experiment_name,
arguments, query_filter, enable_versioning, pipeline_version,
- datalake_source, _measurement, bucket, is_mme, model_name) = check_trainingjob_data(trainingjob_name, json_data)
+ datalake_source, is_mme, model_name)= check_trainingjob_data(trainingjob_name, json_data)
if is_mme:
featuregroup_name=results[0][2]
pipeline_name, pipeline_version=results[0][3], results[0][13]
# model name is not changing hence model info is unchanged.
- model_info = results[0][22]
+ model_info = results[0][20]
add_update_trainingjob(description, pipeline_name, experiment_name, featuregroup_name,
- arguments, query_filter, False, enable_versioning,
- pipeline_version, datalake_source, trainingjob_name, PS_DB_OBJ, _measurement=_measurement,
- bucket=bucket, is_mme=is_mme, model_name=model_name, model_info=model_info)
+ arguments, query_filter, False, enable_versioning,
+ pipeline_version, datalake_source, trainingjob_name,
+ PS_DB_OBJ,is_mme=is_mme, model_name=model_name, model_info=model_info)
api_response = {"result": "Information updated in database."}
response_code = status.HTTP_200_OK
except Exception as err: