Add to_directory method to relevant object classes
[oam.git] / code / network-generator / network_generation / model / python / nr_cell_du.py
index b104267..13fc42b 100644 (file)
@@ -1,4 +1,4 @@
-# Copyright 2023 highstreet technologies GmbH
+# Copyright 2023 highstreet technologies USA CORP.
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # See the License for the specific language governing permissions and
 # limitations under the License.
 
-#!/usr/bin/python
+# !/usr/bin/python
 
 """
 A Class representing a 3GPP new radio cell du (NrCellDu)
 """
-from typing import overload
+import math
+import xml.etree.ElementTree as ET
+from typing import Any, cast
 
-from network_generation.model.python.o_ran_termination_point import ORanTerminationPoint
-from network_generation.model.python.o_ran_object import IORanObject
-from network_generation.model.python.o_ran_node import ORanNode
 import network_generation.model.python.hexagon as Hexagon
+from network_generation.model.python.geo_location import (
+    GeoLocation,
+    IGeoLocation,
+)
+from network_generation.model.python.o_ran_node import IORanNode, ORanNode
+from network_generation.model.python.o_ran_termination_point import (
+    ORanTerminationPoint,
+)
 from network_generation.model.python.point import Point
-from network_generation.model.python.geo_location import GeoLocation
-import xml.etree.ElementTree as ET
 
 
 # Define the "INrCellDu" interface
-class INrCellDu(IORanObject):
-    def __init__(self, cell_angel: int, azimuth: int, **kwargs):
-        super().__init__(**kwargs)
-        self._cell_angle = cell_angel
-        self._azimuth = azimuth
+class INrCellDu(IORanNode):
+    cellAngle: int
+    cellScaleFactorForHandoverArea: int
+    maxReach: int
+    azimuth: int
+
+
+default_value: INrCellDu = cast(
+    INrCellDu,
+    {
+        **ORanNode.default(),
+        **{
+            "cellAngle": 120,
+            "cellScaleFactorForHandoverArea": 0,
+            "maxReach": 100,
+            "azimuth": 120,
+        },
+    },
+)
 
 
 # Define an abstract O-RAN Node class
-class NrCellDu(ORanNode, INrCellDu):
-    def __init__(self, cell_data: INrCellDu = None, **kwargs):
-        super().__init__(cell_data, **kwargs)
-        self._cell_angle = (
-            cell_data["cellAngle"] if cell_data and "cellAngle" in cell_data else 120
-        )
-        self._azimuth = (
-            cell_data["azimuth"] if cell_data and "azimuth" in cell_data else 0
+class NrCellDu(ORanNode):
+    def __init__(
+        self,
+        data: dict[str, Any] = cast(dict[str, Any], default_value),
+        **kwargs: dict[str, Any]
+    ) -> None:
+        cell_data: INrCellDu = self._to_cell_data(data)
+        super().__init__(cast(dict[str, Any], cell_data), **kwargs)
+        self._cell_angle: int = int(str(cell_data["cellAngle"]))
+        self._cell_scale_factor: int = int(
+            str(cell_data["cellScaleFactorForHandoverArea"])
         )
+        self._maxReach: int = int(str(cell_data["maxReach"]))
+        self._azimuth: int = int(str(cell_data["azimuth"]))
+
+    def _to_cell_data(self, data: dict[str, Any]) -> INrCellDu:
+        result: INrCellDu = default_value
+        for key, key_type in INrCellDu.__annotations__.items():
+            if key in data:
+                result[key] = data[key]  # type: ignore
+        return result
 
     @property
+    def cell_angle(self) -> int:
+        return self._cell_angle
+
+    @cell_angle.setter
+    def cell_angle(self, value: int) -> None:
+        self._cell_angle = value
+
+    @property
+    def cell_scale_factor(self) -> int:
+        return self._cell_scale_factor
+
+    @cell_scale_factor.setter
+    def cell_scale_factor(self, value: int) -> None:
+        self._cell_scale_factor = value
+
+    @property
+    def maxReach(self) -> int:
+        return self._maxReach
+
+    @maxReach.setter
+    def maxReach(self, value: int) -> None:
+        self._maxReach = value
+
+    @property
+    def azimuth(self) -> int:
+        return self._azimuth
+
+    @azimuth.setter
+    def azimuth(self, value: int) -> None:
+        self._azimuth = value
+
     def termination_points(self) -> list[ORanTerminationPoint]:
-        result: list[ORanTerminationPoint] = super().termination_points
-        result.append(ORanTerminationPoint({"id": self.name, "name": self.name}))
+        result: list[ORanTerminationPoint] = super().termination_points()
+        result.append(ORanTerminationPoint(
+            {"id": self.name, "name": self.name}
+        ))
         return result
 
-    def to_topology_nodes(self) -> list[dict[str, dict]]:
+    def to_topology_nodes(self) -> list[dict[str, Any]]:
         # a cell is not a node it is a Termination Point
-        result: list[dict[str, dict]] = []  # super().to_topology_nodes()
+        result: list[dict[str, Any]] = []  # super().to_topology_nodes()
         return result
 
-    def to_topology_links(self) -> list[dict[str, dict]]:
+    def to_topology_links(self) -> list[dict[str, Any]]:
         # as a cell is not a node, it does not have links
-        result: list[dict[str, dict]] = []  # super().to_topology_links()
+        result: list[dict[str, Any]] = []  # super().to_topology_links()
         return result
 
     def toKml(self) -> ET.Element:
@@ -75,52 +139,107 @@ class NrCellDu(ORanNode, INrCellDu):
         linear_ring: ET.Element = ET.SubElement(outer_boundary, "LinearRing")
         coordinates: ET.Element = ET.SubElement(linear_ring, "coordinates")
 
-        points: list[Point] = Hexagon.polygon_corners(self.layout, self.position)
-        method = GeoLocation(
-            self.parent.parent.parent.parent.parent.parent.geoLocation
-        ).point_to_geo_location
+        points: list[Point] = Hexagon.polygon_corners(
+            self.layout, self.position
+        )
+        method = (
+            self.parent.parent.parent.parent.parent.parent
+            .geo_location.point_to_geo_location
+        )
         geo_locations: list[GeoLocation] = list(map(method, points))
         text: list[str] = []
 
         index: int = 1 + int(self._azimuth / self._cell_angle)
-        network_center: GeoLocation = GeoLocation(
-            self.parent.parent.parent.parent.parent.parent.geoLocation
+        network_center: GeoLocation = (
+            self.parent.parent.parent.parent.parent.parent.geo_location
         )
 
+        p1: int = (2 * index + 1) % 6
+        p2: int = (2 * index + 2) % 6
         intersect1: Point = Point(
-            (points[(2 * index + 1) % 6].x + points[(2 * index + 2) % 6].x) / 2,
-            (points[(2 * index + 1) % 6].y + points[(2 * index + 2) % 6].y) / 2,
+            (points[p1].x + points[p2].x) / 2,
+            (points[p1].y + points[p2].y) / 2,
         )
-        intersect_geo_location1: GeoLocation = network_center.point_to_geo_location(
+        intersect_gl1: GeoLocation = network_center.point_to_geo_location(
             intersect1
         )
 
+        p3: int = (2 * index + 3) % 6
+        p4: int = (2 * index + 4) % 6
         intersect2: Point = Point(
-            (points[(2 * index + 3) % 6].x + points[(2 * index + 4) % 6].x) / 2,
-            (points[(2 * index + 3) % 6].y + points[(2 * index + 4) % 6].y) / 2,
+            (points[p3].x + points[p4].x) / 2,
+            (points[p3].y + points[p4].y) / 2,
         )
-        intersect_geo_location2: GeoLocation = network_center.point_to_geo_location(
+        intersect_gl2: GeoLocation = network_center.point_to_geo_location(
             intersect2
         )
 
-        tower: GeoLocation = GeoLocation(self.geoLocation)
+        tower: GeoLocation = GeoLocation(cast(IGeoLocation, self.geo_location))
+        # TODO: Why a cast is required
 
         cell_polygon: list[GeoLocation] = []
         cell_polygon.append(tower)
-        cell_polygon.append(intersect_geo_location1)
+        cell_polygon.append(intersect_gl1)
         cell_polygon.append(geo_locations[(2 * index + 2) % 6])
         cell_polygon.append(geo_locations[(2 * index + 3) % 6])
-        cell_polygon.append(intersect_geo_location2)
+        cell_polygon.append(intersect_gl2)
         # close polygon
         cell_polygon.append(tower)
 
-        for geo_location in cell_polygon:
-            text.append(
-                f"{'%.6f' % geo_location.longitude},{'%.6f' % geo_location.latitude},{'%.6f' % geo_location.aboveMeanSeaLevel}"
-            )
+        for gl in cell_polygon:
+            strs: list[str] = [
+                str("%.6f" % float(gl.longitude)),
+                str("%.6f" % float(gl.latitude)),
+                str("%.6f" % float(gl.aboveMeanSeaLevel)),
+            ]
+            text.append(",".join(strs))
         coordinates.text = " ".join(text)
 
+        if self.cell_scale_factor > 0:
+            scaled_polygon: ET.Element = ET.SubElement(
+                multi_geometry, "Polygon")
+            scaled_outer_boundary: ET.Element = ET.SubElement(
+                scaled_polygon, "outerBoundaryIs")
+            scaled_linear_ring: ET.Element = ET.SubElement(
+                scaled_outer_boundary, "LinearRing")
+            scaled_coordinates: ET.Element = ET.SubElement(
+                scaled_linear_ring, "coordinates")
+
+            arc: float = self.azimuth * math.pi / 180
+            meterToDegree: float = (
+                2 * math.pi * GeoLocation().equatorialRadius / 360
+            )
+            centerX: float = self.layout.size.x * 0.5 * math.sin(arc)
+            centerY: float = self.layout.size.y * 0.5 * math.cos(arc)
+            cell_center: GeoLocation = GeoLocation(
+                {
+                    "latitude": tower.latitude + centerY / meterToDegree,
+                    "longitude": tower.longitude + centerX / meterToDegree,
+                    "aboveMeanSeaLevel": tower.aboveMeanSeaLevel,
+                }
+            )
+            point_index: int = 0
+            text = []
+            for gl in cell_polygon:
+                scale: float = 1 + self.cell_scale_factor / 100
+                lng_new: float = (
+                    1 * scale * (gl.longitude - cell_center.longitude)
+                ) + cell_center.longitude
+                lat_new: float = (
+                    1 * scale * (gl.latitude - cell_center.latitude)
+                ) + cell_center.latitude
+                scaled_strs: list[str] = [
+                    str("%.6f" % float(lng_new)),
+                    str("%.6f" % float(lat_new)),
+                    str("%.6f" % float(gl.aboveMeanSeaLevel)),
+                ]
+                text.append(",".join(scaled_strs))
+                point_index += 1
+            scaled_coordinates.text = " ".join(text)
         return placemark
 
-    def toSvg(self) -> None:
-        return None
+    def toSvg(self) -> ET.Element:
+        return ET.Element("to-be-implemented")
+
+    def to_directory(self, parent_dir: str) -> None:
+        pass