Add first version
[ric-plt/sdl.git] / 3rdparty / googletest / googletest / test / googletest-printers-test.cc
diff --git a/3rdparty/googletest/googletest/test/googletest-printers-test.cc b/3rdparty/googletest/googletest/test/googletest-printers-test.cc
new file mode 100644 (file)
index 0000000..ea8369d
--- /dev/null
@@ -0,0 +1,1748 @@
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Test - The Google C++ Testing and Mocking Framework
+//
+// This file tests the universal value printer.
+
+#include <ctype.h>
+#include <limits.h>
+#include <string.h>
+#include <algorithm>
+#include <deque>
+#include <list>
+#include <map>
+#include <set>
+#include <sstream>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "gtest/gtest-printers.h"
+#include "gtest/gtest.h"
+
+#if GTEST_HAS_UNORDERED_MAP_
+# include <unordered_map>  // NOLINT
+#endif  // GTEST_HAS_UNORDERED_MAP_
+
+#if GTEST_HAS_UNORDERED_SET_
+# include <unordered_set>  // NOLINT
+#endif  // GTEST_HAS_UNORDERED_SET_
+
+#if GTEST_HAS_STD_FORWARD_LIST_
+# include <forward_list> // NOLINT
+#endif  // GTEST_HAS_STD_FORWARD_LIST_
+
+// Some user-defined types for testing the universal value printer.
+
+// An anonymous enum type.
+enum AnonymousEnum {
+  kAE1 = -1,
+  kAE2 = 1
+};
+
+// An enum without a user-defined printer.
+enum EnumWithoutPrinter {
+  kEWP1 = -2,
+  kEWP2 = 42
+};
+
+// An enum with a << operator.
+enum EnumWithStreaming {
+  kEWS1 = 10
+};
+
+std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
+  return os << (e == kEWS1 ? "kEWS1" : "invalid");
+}
+
+// An enum with a PrintTo() function.
+enum EnumWithPrintTo {
+  kEWPT1 = 1
+};
+
+void PrintTo(EnumWithPrintTo e, std::ostream* os) {
+  *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
+}
+
+// A class implicitly convertible to BiggestInt.
+class BiggestIntConvertible {
+ public:
+  operator ::testing::internal::BiggestInt() const { return 42; }
+};
+
+// A user-defined unprintable class template in the global namespace.
+template <typename T>
+class UnprintableTemplateInGlobal {
+ public:
+  UnprintableTemplateInGlobal() : value_() {}
+ private:
+  T value_;
+};
+
+// A user-defined streamable type in the global namespace.
+class StreamableInGlobal {
+ public:
+  virtual ~StreamableInGlobal() {}
+};
+
+inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
+  os << "StreamableInGlobal";
+}
+
+void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
+  os << "StreamableInGlobal*";
+}
+
+namespace foo {
+
+// A user-defined unprintable type in a user namespace.
+class UnprintableInFoo {
+ public:
+  UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
+  double z() const { return z_; }
+ private:
+  char xy_[8];
+  double z_;
+};
+
+// A user-defined printable type in a user-chosen namespace.
+struct PrintableViaPrintTo {
+  PrintableViaPrintTo() : value() {}
+  int value;
+};
+
+void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
+  *os << "PrintableViaPrintTo: " << x.value;
+}
+
+// A type with a user-defined << for printing its pointer.
+struct PointerPrintable {
+};
+
+::std::ostream& operator<<(::std::ostream& os,
+                           const PointerPrintable* /* x */) {
+  return os << "PointerPrintable*";
+}
+
+// A user-defined printable class template in a user-chosen namespace.
+template <typename T>
+class PrintableViaPrintToTemplate {
+ public:
+  explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
+
+  const T& value() const { return value_; }
+ private:
+  T value_;
+};
+
+template <typename T>
+void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
+  *os << "PrintableViaPrintToTemplate: " << x.value();
+}
+
+// A user-defined streamable class template in a user namespace.
+template <typename T>
+class StreamableTemplateInFoo {
+ public:
+  StreamableTemplateInFoo() : value_() {}
+
+  const T& value() const { return value_; }
+ private:
+  T value_;
+};
+
+template <typename T>
+inline ::std::ostream& operator<<(::std::ostream& os,
+                                  const StreamableTemplateInFoo<T>& x) {
+  return os << "StreamableTemplateInFoo: " << x.value();
+}
+
+// A user-defined streamable but recursivly-defined container type in
+// a user namespace, it mimics therefore std::filesystem::path or
+// boost::filesystem::path.
+class PathLike {
+ public:
+  struct iterator {
+    typedef PathLike value_type;
+  };
+
+  PathLike() {}
+
+  iterator begin() const { return iterator(); }
+  iterator end() const { return iterator(); }
+
+  friend ::std::ostream& operator<<(::std::ostream& os, const PathLike&) {
+    return os << "Streamable-PathLike";
+  }
+};
+
+}  // namespace foo
+
+namespace testing {
+namespace gtest_printers_test {
+
+using ::std::deque;
+using ::std::list;
+using ::std::make_pair;
+using ::std::map;
+using ::std::multimap;
+using ::std::multiset;
+using ::std::pair;
+using ::std::set;
+using ::std::vector;
+using ::testing::PrintToString;
+using ::testing::internal::FormatForComparisonFailureMessage;
+using ::testing::internal::ImplicitCast_;
+using ::testing::internal::NativeArray;
+using ::testing::internal::RE;
+using ::testing::internal::RelationToSourceReference;
+using ::testing::internal::Strings;
+using ::testing::internal::UniversalPrint;
+using ::testing::internal::UniversalPrinter;
+using ::testing::internal::UniversalTersePrint;
+#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
+using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
+#endif
+
+// Prints a value to a string using the universal value printer.  This
+// is a helper for testing UniversalPrinter<T>::Print() for various types.
+template <typename T>
+std::string Print(const T& value) {
+  ::std::stringstream ss;
+  UniversalPrinter<T>::Print(value, &ss);
+  return ss.str();
+}
+
+// Prints a value passed by reference to a string, using the universal
+// value printer.  This is a helper for testing
+// UniversalPrinter<T&>::Print() for various types.
+template <typename T>
+std::string PrintByRef(const T& value) {
+  ::std::stringstream ss;
+  UniversalPrinter<T&>::Print(value, &ss);
+  return ss.str();
+}
+
+// Tests printing various enum types.
+
+TEST(PrintEnumTest, AnonymousEnum) {
+  EXPECT_EQ("-1", Print(kAE1));
+  EXPECT_EQ("1", Print(kAE2));
+}
+
+TEST(PrintEnumTest, EnumWithoutPrinter) {
+  EXPECT_EQ("-2", Print(kEWP1));
+  EXPECT_EQ("42", Print(kEWP2));
+}
+
+TEST(PrintEnumTest, EnumWithStreaming) {
+  EXPECT_EQ("kEWS1", Print(kEWS1));
+  EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
+}
+
+TEST(PrintEnumTest, EnumWithPrintTo) {
+  EXPECT_EQ("kEWPT1", Print(kEWPT1));
+  EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
+}
+
+// Tests printing a class implicitly convertible to BiggestInt.
+
+TEST(PrintClassTest, BiggestIntConvertible) {
+  EXPECT_EQ("42", Print(BiggestIntConvertible()));
+}
+
+// Tests printing various char types.
+
+// char.
+TEST(PrintCharTest, PlainChar) {
+  EXPECT_EQ("'\\0'", Print('\0'));
+  EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
+  EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
+  EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
+  EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
+  EXPECT_EQ("'\\a' (7)", Print('\a'));
+  EXPECT_EQ("'\\b' (8)", Print('\b'));
+  EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
+  EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
+  EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
+  EXPECT_EQ("'\\t' (9)", Print('\t'));
+  EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
+  EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
+  EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
+  EXPECT_EQ("' ' (32, 0x20)", Print(' '));
+  EXPECT_EQ("'a' (97, 0x61)", Print('a'));
+}
+
+// signed char.
+TEST(PrintCharTest, SignedChar) {
+  EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
+  EXPECT_EQ("'\\xCE' (-50)",
+            Print(static_cast<signed char>(-50)));
+}
+
+// unsigned char.
+TEST(PrintCharTest, UnsignedChar) {
+  EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
+  EXPECT_EQ("'b' (98, 0x62)",
+            Print(static_cast<unsigned char>('b')));
+}
+
+// Tests printing other simple, built-in types.
+
+// bool.
+TEST(PrintBuiltInTypeTest, Bool) {
+  EXPECT_EQ("false", Print(false));
+  EXPECT_EQ("true", Print(true));
+}
+
+// wchar_t.
+TEST(PrintBuiltInTypeTest, Wchar_t) {
+  EXPECT_EQ("L'\\0'", Print(L'\0'));
+  EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
+  EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
+  EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
+  EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
+  EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
+  EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
+  EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
+  EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
+  EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
+  EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
+  EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
+  EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
+  EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
+  EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
+  EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
+  EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
+  EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
+}
+
+// Test that Int64 provides more storage than wchar_t.
+TEST(PrintTypeSizeTest, Wchar_t) {
+  EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
+}
+
+// Various integer types.
+TEST(PrintBuiltInTypeTest, Integer) {
+  EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255)));  // uint8
+  EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128)));  // int8
+  EXPECT_EQ("65535", Print(USHRT_MAX));  // uint16
+  EXPECT_EQ("-32768", Print(SHRT_MIN));  // int16
+  EXPECT_EQ("4294967295", Print(UINT_MAX));  // uint32
+  EXPECT_EQ("-2147483648", Print(INT_MIN));  // int32
+  EXPECT_EQ("18446744073709551615",
+            Print(static_cast<testing::internal::UInt64>(-1)));  // uint64
+  EXPECT_EQ("-9223372036854775808",
+            Print(static_cast<testing::internal::Int64>(1) << 63));  // int64
+}
+
+// Size types.
+TEST(PrintBuiltInTypeTest, Size_t) {
+  EXPECT_EQ("1", Print(sizeof('a')));  // size_t.
+#if !GTEST_OS_WINDOWS
+  // Windows has no ssize_t type.
+  EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2)));  // ssize_t.
+#endif  // !GTEST_OS_WINDOWS
+}
+
+// Floating-points.
+TEST(PrintBuiltInTypeTest, FloatingPoints) {
+  EXPECT_EQ("1.5", Print(1.5f));   // float
+  EXPECT_EQ("-2.5", Print(-2.5));  // double
+}
+
+// Since ::std::stringstream::operator<<(const void *) formats the pointer
+// output differently with different compilers, we have to create the expected
+// output first and use it as our expectation.
+static std::string PrintPointer(const void* p) {
+  ::std::stringstream expected_result_stream;
+  expected_result_stream << p;
+  return expected_result_stream.str();
+}
+
+// Tests printing C strings.
+
+// const char*.
+TEST(PrintCStringTest, Const) {
+  const char* p = "World";
+  EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
+}
+
+// char*.
+TEST(PrintCStringTest, NonConst) {
+  char p[] = "Hi";
+  EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
+            Print(static_cast<char*>(p)));
+}
+
+// NULL C string.
+TEST(PrintCStringTest, Null) {
+  const char* p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// Tests that C strings are escaped properly.
+TEST(PrintCStringTest, EscapesProperly) {
+  const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
+  EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
+            "\\n\\r\\t\\v\\x7F\\xFF a\"",
+            Print(p));
+}
+
+// MSVC compiler can be configured to define whar_t as a typedef
+// of unsigned short. Defining an overload for const wchar_t* in that case
+// would cause pointers to unsigned shorts be printed as wide strings,
+// possibly accessing more memory than intended and causing invalid
+// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
+// wchar_t is implemented as a native type.
+#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
+
+// const wchar_t*.
+TEST(PrintWideCStringTest, Const) {
+  const wchar_t* p = L"World";
+  EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
+}
+
+// wchar_t*.
+TEST(PrintWideCStringTest, NonConst) {
+  wchar_t p[] = L"Hi";
+  EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
+            Print(static_cast<wchar_t*>(p)));
+}
+
+// NULL wide C string.
+TEST(PrintWideCStringTest, Null) {
+  const wchar_t* p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// Tests that wide C strings are escaped properly.
+TEST(PrintWideCStringTest, EscapesProperly) {
+  const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
+                       '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
+  EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
+            "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
+            Print(static_cast<const wchar_t*>(s)));
+}
+#endif  // native wchar_t
+
+// Tests printing pointers to other char types.
+
+// signed char*.
+TEST(PrintCharPointerTest, SignedChar) {
+  signed char* p = reinterpret_cast<signed char*>(0x1234);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// const signed char*.
+TEST(PrintCharPointerTest, ConstSignedChar) {
+  signed char* p = reinterpret_cast<signed char*>(0x1234);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// unsigned char*.
+TEST(PrintCharPointerTest, UnsignedChar) {
+  unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// const unsigned char*.
+TEST(PrintCharPointerTest, ConstUnsignedChar) {
+  const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// Tests printing pointers to simple, built-in types.
+
+// bool*.
+TEST(PrintPointerToBuiltInTypeTest, Bool) {
+  bool* p = reinterpret_cast<bool*>(0xABCD);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// void*.
+TEST(PrintPointerToBuiltInTypeTest, Void) {
+  void* p = reinterpret_cast<void*>(0xABCD);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// const void*.
+TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
+  const void* p = reinterpret_cast<const void*>(0xABCD);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// Tests printing pointers to pointers.
+TEST(PrintPointerToPointerTest, IntPointerPointer) {
+  int** p = reinterpret_cast<int**>(0xABCD);
+  EXPECT_EQ(PrintPointer(p), Print(p));
+  p = NULL;
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// Tests printing (non-member) function pointers.
+
+void MyFunction(int /* n */) {}
+
+TEST(PrintPointerTest, NonMemberFunctionPointer) {
+  // We cannot directly cast &MyFunction to const void* because the
+  // standard disallows casting between pointers to functions and
+  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
+  // this limitation.
+  EXPECT_EQ(
+      PrintPointer(reinterpret_cast<const void*>(
+          reinterpret_cast<internal::BiggestInt>(&MyFunction))),
+      Print(&MyFunction));
+  int (*p)(bool) = NULL;  // NOLINT
+  EXPECT_EQ("NULL", Print(p));
+}
+
+// An assertion predicate determining whether a one string is a prefix for
+// another.
+template <typename StringType>
+AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
+  if (str.find(prefix, 0) == 0)
+    return AssertionSuccess();
+
+  const bool is_wide_string = sizeof(prefix[0]) > 1;
+  const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
+  return AssertionFailure()
+      << begin_string_quote << prefix << "\" is not a prefix of "
+      << begin_string_quote << str << "\"\n";
+}
+
+// Tests printing member variable pointers.  Although they are called
+// pointers, they don't point to a location in the address space.
+// Their representation is implementation-defined.  Thus they will be
+// printed as raw bytes.
+
+struct Foo {
+ public:
+  virtual ~Foo() {}
+  int MyMethod(char x) { return x + 1; }
+  virtual char MyVirtualMethod(int /* n */) { return 'a'; }
+
+  int value;
+};
+
+TEST(PrintPointerTest, MemberVariablePointer) {
+  EXPECT_TRUE(HasPrefix(Print(&Foo::value),
+                        Print(sizeof(&Foo::value)) + "-byte object "));
+  int Foo::*p = NULL;  // NOLINT
+  EXPECT_TRUE(HasPrefix(Print(p),
+                        Print(sizeof(p)) + "-byte object "));
+}
+
+// Tests printing member function pointers.  Although they are called
+// pointers, they don't point to a location in the address space.
+// Their representation is implementation-defined.  Thus they will be
+// printed as raw bytes.
+TEST(PrintPointerTest, MemberFunctionPointer) {
+  EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
+                        Print(sizeof(&Foo::MyMethod)) + "-byte object "));
+  EXPECT_TRUE(
+      HasPrefix(Print(&Foo::MyVirtualMethod),
+                Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
+  int (Foo::*p)(char) = NULL;  // NOLINT
+  EXPECT_TRUE(HasPrefix(Print(p),
+                        Print(sizeof(p)) + "-byte object "));
+}
+
+// Tests printing C arrays.
+
+// The difference between this and Print() is that it ensures that the
+// argument is a reference to an array.
+template <typename T, size_t N>
+std::string PrintArrayHelper(T (&a)[N]) {
+  return Print(a);
+}
+
+// One-dimensional array.
+TEST(PrintArrayTest, OneDimensionalArray) {
+  int a[5] = { 1, 2, 3, 4, 5 };
+  EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
+}
+
+// Two-dimensional array.
+TEST(PrintArrayTest, TwoDimensionalArray) {
+  int a[2][5] = {
+    { 1, 2, 3, 4, 5 },
+    { 6, 7, 8, 9, 0 }
+  };
+  EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
+}
+
+// Array of const elements.
+TEST(PrintArrayTest, ConstArray) {
+  const bool a[1] = { false };
+  EXPECT_EQ("{ false }", PrintArrayHelper(a));
+}
+
+// char array without terminating NUL.
+TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
+  // Array a contains '\0' in the middle and doesn't end with '\0'.
+  char a[] = { 'H', '\0', 'i' };
+  EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
+}
+
+// const char array with terminating NUL.
+TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
+  const char a[] = "\0Hi";
+  EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
+}
+
+// const wchar_t array without terminating NUL.
+TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
+  // Array a contains '\0' in the middle and doesn't end with '\0'.
+  const wchar_t a[] = { L'H', L'\0', L'i' };
+  EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
+}
+
+// wchar_t array with terminating NUL.
+TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
+  const wchar_t a[] = L"\0Hi";
+  EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
+}
+
+// Array of objects.
+TEST(PrintArrayTest, ObjectArray) {
+  std::string a[3] = {"Hi", "Hello", "Ni hao"};
+  EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
+}
+
+// Array with many elements.
+TEST(PrintArrayTest, BigArray) {
+  int a[100] = { 1, 2, 3 };
+  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
+            PrintArrayHelper(a));
+}
+
+// Tests printing ::string and ::std::string.
+
+#if GTEST_HAS_GLOBAL_STRING
+// ::string.
+TEST(PrintStringTest, StringInGlobalNamespace) {
+  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
+  const ::string str(s, sizeof(s));
+  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
+            Print(str));
+}
+#endif  // GTEST_HAS_GLOBAL_STRING
+
+// ::std::string.
+TEST(PrintStringTest, StringInStdNamespace) {
+  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
+  const ::std::string str(s, sizeof(s));
+  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
+            Print(str));
+}
+
+TEST(PrintStringTest, StringAmbiguousHex) {
+  // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
+  // '\x6', '\x6B', or '\x6BA'.
+
+  // a hex escaping sequence following by a decimal digit
+  EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
+  // a hex escaping sequence following by a hex digit (lower-case)
+  EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
+  // a hex escaping sequence following by a hex digit (upper-case)
+  EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
+  // a hex escaping sequence following by a non-xdigit
+  EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
+}
+
+// Tests printing ::wstring and ::std::wstring.
+
+#if GTEST_HAS_GLOBAL_WSTRING
+// ::wstring.
+TEST(PrintWideStringTest, StringInGlobalNamespace) {
+  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
+  const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
+  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
+            "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
+            Print(str));
+}
+#endif  // GTEST_HAS_GLOBAL_WSTRING
+
+#if GTEST_HAS_STD_WSTRING
+// ::std::wstring.
+TEST(PrintWideStringTest, StringInStdNamespace) {
+  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
+  const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
+  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
+            "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
+            Print(str));
+}
+
+TEST(PrintWideStringTest, StringAmbiguousHex) {
+  // same for wide strings.
+  EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
+  EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
+            Print(::std::wstring(L"mm\x6" L"bananas")));
+  EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
+            Print(::std::wstring(L"NOM\x6" L"BANANA")));
+  EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
+}
+#endif  // GTEST_HAS_STD_WSTRING
+
+// Tests printing types that support generic streaming (i.e. streaming
+// to std::basic_ostream<Char, CharTraits> for any valid Char and
+// CharTraits types).
+
+// Tests printing a non-template type that supports generic streaming.
+
+class AllowsGenericStreaming {};
+
+template <typename Char, typename CharTraits>
+std::basic_ostream<Char, CharTraits>& operator<<(
+    std::basic_ostream<Char, CharTraits>& os,
+    const AllowsGenericStreaming& /* a */) {
+  return os << "AllowsGenericStreaming";
+}
+
+TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
+  AllowsGenericStreaming a;
+  EXPECT_EQ("AllowsGenericStreaming", Print(a));
+}
+
+// Tests printing a template type that supports generic streaming.
+
+template <typename T>
+class AllowsGenericStreamingTemplate {};
+
+template <typename Char, typename CharTraits, typename T>
+std::basic_ostream<Char, CharTraits>& operator<<(
+    std::basic_ostream<Char, CharTraits>& os,
+    const AllowsGenericStreamingTemplate<T>& /* a */) {
+  return os << "AllowsGenericStreamingTemplate";
+}
+
+TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
+  AllowsGenericStreamingTemplate<int> a;
+  EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
+}
+
+// Tests printing a type that supports generic streaming and can be
+// implicitly converted to another printable type.
+
+template <typename T>
+class AllowsGenericStreamingAndImplicitConversionTemplate {
+ public:
+  operator bool() const { return false; }
+};
+
+template <typename Char, typename CharTraits, typename T>
+std::basic_ostream<Char, CharTraits>& operator<<(
+    std::basic_ostream<Char, CharTraits>& os,
+    const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
+  return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
+}
+
+TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
+  AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
+  EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
+}
+
+#if GTEST_HAS_ABSL
+
+// Tests printing ::absl::string_view.
+
+TEST(PrintStringViewTest, SimpleStringView) {
+  const ::absl::string_view sp = "Hello";
+  EXPECT_EQ("\"Hello\"", Print(sp));
+}
+
+TEST(PrintStringViewTest, UnprintableCharacters) {
+  const char str[] = "NUL (\0) and \r\t";
+  const ::absl::string_view sp(str, sizeof(str) - 1);
+  EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
+}
+
+#endif  // GTEST_HAS_ABSL
+
+// Tests printing STL containers.
+
+TEST(PrintStlContainerTest, EmptyDeque) {
+  deque<char> empty;
+  EXPECT_EQ("{}", Print(empty));
+}
+
+TEST(PrintStlContainerTest, NonEmptyDeque) {
+  deque<int> non_empty;
+  non_empty.push_back(1);
+  non_empty.push_back(3);
+  EXPECT_EQ("{ 1, 3 }", Print(non_empty));
+}
+
+#if GTEST_HAS_UNORDERED_MAP_
+
+TEST(PrintStlContainerTest, OneElementHashMap) {
+  ::std::unordered_map<int, char> map1;
+  map1[1] = 'a';
+  EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
+}
+
+TEST(PrintStlContainerTest, HashMultiMap) {
+  ::std::unordered_multimap<int, bool> map1;
+  map1.insert(make_pair(5, true));
+  map1.insert(make_pair(5, false));
+
+  // Elements of hash_multimap can be printed in any order.
+  const std::string result = Print(map1);
+  EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
+              result == "{ (5, false), (5, true) }")
+                  << " where Print(map1) returns \"" << result << "\".";
+}
+
+#endif  // GTEST_HAS_UNORDERED_MAP_
+
+#if GTEST_HAS_UNORDERED_SET_
+
+TEST(PrintStlContainerTest, HashSet) {
+  ::std::unordered_set<int> set1;
+  set1.insert(1);
+  EXPECT_EQ("{ 1 }", Print(set1));
+}
+
+TEST(PrintStlContainerTest, HashMultiSet) {
+  const int kSize = 5;
+  int a[kSize] = { 1, 1, 2, 5, 1 };
+  ::std::unordered_multiset<int> set1(a, a + kSize);
+
+  // Elements of hash_multiset can be printed in any order.
+  const std::string result = Print(set1);
+  const std::string expected_pattern = "{ d, d, d, d, d }";  // d means a digit.
+
+  // Verifies the result matches the expected pattern; also extracts
+  // the numbers in the result.
+  ASSERT_EQ(expected_pattern.length(), result.length());
+  std::vector<int> numbers;
+  for (size_t i = 0; i != result.length(); i++) {
+    if (expected_pattern[i] == 'd') {
+      ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
+      numbers.push_back(result[i] - '0');
+    } else {
+      EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
+                                                << result;
+    }
+  }
+
+  // Makes sure the result contains the right numbers.
+  std::sort(numbers.begin(), numbers.end());
+  std::sort(a, a + kSize);
+  EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
+}
+
+#endif  //  GTEST_HAS_UNORDERED_SET_
+
+TEST(PrintStlContainerTest, List) {
+  const std::string a[] = {"hello", "world"};
+  const list<std::string> strings(a, a + 2);
+  EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
+}
+
+TEST(PrintStlContainerTest, Map) {
+  map<int, bool> map1;
+  map1[1] = true;
+  map1[5] = false;
+  map1[3] = true;
+  EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
+}
+
+TEST(PrintStlContainerTest, MultiMap) {
+  multimap<bool, int> map1;
+  // The make_pair template function would deduce the type as
+  // pair<bool, int> here, and since the key part in a multimap has to
+  // be constant, without a templated ctor in the pair class (as in
+  // libCstd on Solaris), make_pair call would fail to compile as no
+  // implicit conversion is found.  Thus explicit typename is used
+  // here instead.
+  map1.insert(pair<const bool, int>(true, 0));
+  map1.insert(pair<const bool, int>(true, 1));
+  map1.insert(pair<const bool, int>(false, 2));
+  EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
+}
+
+TEST(PrintStlContainerTest, Set) {
+  const unsigned int a[] = { 3, 0, 5 };
+  set<unsigned int> set1(a, a + 3);
+  EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
+}
+
+TEST(PrintStlContainerTest, MultiSet) {
+  const int a[] = { 1, 1, 2, 5, 1 };
+  multiset<int> set1(a, a + 5);
+  EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
+}
+
+#if GTEST_HAS_STD_FORWARD_LIST_
+
+TEST(PrintStlContainerTest, SinglyLinkedList) {
+  int a[] = { 9, 2, 8 };
+  const std::forward_list<int> ints(a, a + 3);
+  EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
+}
+#endif  // GTEST_HAS_STD_FORWARD_LIST_
+
+TEST(PrintStlContainerTest, Pair) {
+  pair<const bool, int> p(true, 5);
+  EXPECT_EQ("(true, 5)", Print(p));
+}
+
+TEST(PrintStlContainerTest, Vector) {
+  vector<int> v;
+  v.push_back(1);
+  v.push_back(2);
+  EXPECT_EQ("{ 1, 2 }", Print(v));
+}
+
+TEST(PrintStlContainerTest, LongSequence) {
+  const int a[100] = { 1, 2, 3 };
+  const vector<int> v(a, a + 100);
+  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
+            "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
+}
+
+TEST(PrintStlContainerTest, NestedContainer) {
+  const int a1[] = { 1, 2 };
+  const int a2[] = { 3, 4, 5 };
+  const list<int> l1(a1, a1 + 2);
+  const list<int> l2(a2, a2 + 3);
+
+  vector<list<int> > v;
+  v.push_back(l1);
+  v.push_back(l2);
+  EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
+}
+
+TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
+  const int a[3] = { 1, 2, 3 };
+  NativeArray<int> b(a, 3, RelationToSourceReference());
+  EXPECT_EQ("{ 1, 2, 3 }", Print(b));
+}
+
+TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
+  const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
+  NativeArray<int[3]> b(a, 2, RelationToSourceReference());
+  EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
+}
+
+// Tests that a class named iterator isn't treated as a container.
+
+struct iterator {
+  char x;
+};
+
+TEST(PrintStlContainerTest, Iterator) {
+  iterator it = {};
+  EXPECT_EQ("1-byte object <00>", Print(it));
+}
+
+// Tests that a class named const_iterator isn't treated as a container.
+
+struct const_iterator {
+  char x;
+};
+
+TEST(PrintStlContainerTest, ConstIterator) {
+  const_iterator it = {};
+  EXPECT_EQ("1-byte object <00>", Print(it));
+}
+
+#if GTEST_HAS_TR1_TUPLE
+// Tests printing ::std::tr1::tuples.
+
+// Tuples of various arities.
+TEST(PrintTr1TupleTest, VariousSizes) {
+  ::std::tr1::tuple<> t0;
+  EXPECT_EQ("()", Print(t0));
+
+  ::std::tr1::tuple<int> t1(5);
+  EXPECT_EQ("(5)", Print(t1));
+
+  ::std::tr1::tuple<char, bool> t2('a', true);
+  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
+
+  ::std::tr1::tuple<bool, int, int> t3(false, 2, 3);
+  EXPECT_EQ("(false, 2, 3)", Print(t3));
+
+  ::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4);
+  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
+
+  ::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
+  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
+
+  ::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
+
+  ::std::tr1::tuple<bool, int, int, int, bool, int, int> t7(
+      false, 2, 3, 4, true, 6, 7);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
+
+  ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool> t8(
+      false, 2, 3, 4, true, 6, 7, true);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
+
+  ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
+      false, 2, 3, 4, true, 6, 7, true, 9);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
+
+  const char* const str = "8";
+  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
+  // an explicit type cast of NULL to be used.
+  ::std::tr1::tuple<bool, char, short, testing::internal::Int32,  // NOLINT
+                    testing::internal::Int64, float, double, const char*, void*,
+                    std::string>
+      t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str,  // NOLINT
+          ImplicitCast_<void*>(NULL), "10");
+  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
+            " pointing to \"8\", NULL, \"10\")",
+            Print(t10));
+}
+
+// Nested tuples.
+TEST(PrintTr1TupleTest, NestedTuple) {
+  ::std::tr1::tuple< ::std::tr1::tuple<int, bool>, char> nested(
+      ::std::tr1::make_tuple(5, true), 'a');
+  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
+}
+
+#endif  // GTEST_HAS_TR1_TUPLE
+
+#if GTEST_HAS_STD_TUPLE_
+// Tests printing ::std::tuples.
+
+// Tuples of various arities.
+TEST(PrintStdTupleTest, VariousSizes) {
+  ::std::tuple<> t0;
+  EXPECT_EQ("()", Print(t0));
+
+  ::std::tuple<int> t1(5);
+  EXPECT_EQ("(5)", Print(t1));
+
+  ::std::tuple<char, bool> t2('a', true);
+  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
+
+  ::std::tuple<bool, int, int> t3(false, 2, 3);
+  EXPECT_EQ("(false, 2, 3)", Print(t3));
+
+  ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
+  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
+
+  ::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
+  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
+
+  ::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
+
+  ::std::tuple<bool, int, int, int, bool, int, int> t7(
+      false, 2, 3, 4, true, 6, 7);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
+
+  ::std::tuple<bool, int, int, int, bool, int, int, bool> t8(
+      false, 2, 3, 4, true, 6, 7, true);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
+
+  ::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
+      false, 2, 3, 4, true, 6, 7, true, 9);
+  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
+
+  const char* const str = "8";
+  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
+  // an explicit type cast of NULL to be used.
+  ::std::tuple<bool, char, short, testing::internal::Int32,  // NOLINT
+               testing::internal::Int64, float, double, const char*, void*,
+               std::string>
+      t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str,  // NOLINT
+          ImplicitCast_<void*>(NULL), "10");
+  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
+            " pointing to \"8\", NULL, \"10\")",
+            Print(t10));
+}
+
+// Nested tuples.
+TEST(PrintStdTupleTest, NestedTuple) {
+  ::std::tuple< ::std::tuple<int, bool>, char> nested(
+      ::std::make_tuple(5, true), 'a');
+  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
+}
+
+#endif  // GTEST_LANG_CXX11
+
+#if GTEST_LANG_CXX11
+TEST(PrintNullptrT, Basic) {
+  EXPECT_EQ("(nullptr)", Print(nullptr));
+}
+#endif  // GTEST_LANG_CXX11
+
+// Tests printing user-defined unprintable types.
+
+// Unprintable types in the global namespace.
+TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
+  EXPECT_EQ("1-byte object <00>",
+            Print(UnprintableTemplateInGlobal<char>()));
+}
+
+// Unprintable types in a user namespace.
+TEST(PrintUnprintableTypeTest, InUserNamespace) {
+  EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
+            Print(::foo::UnprintableInFoo()));
+}
+
+// Unprintable types are that too big to be printed completely.
+
+struct Big {
+  Big() { memset(array, 0, sizeof(array)); }
+  char array[257];
+};
+
+TEST(PrintUnpritableTypeTest, BigObject) {
+  EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
+            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
+            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
+            "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
+            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
+            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
+            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
+            Print(Big()));
+}
+
+// Tests printing user-defined streamable types.
+
+// Streamable types in the global namespace.
+TEST(PrintStreamableTypeTest, InGlobalNamespace) {
+  StreamableInGlobal x;
+  EXPECT_EQ("StreamableInGlobal", Print(x));
+  EXPECT_EQ("StreamableInGlobal*", Print(&x));
+}
+
+// Printable template types in a user namespace.
+TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
+  EXPECT_EQ("StreamableTemplateInFoo: 0",
+            Print(::foo::StreamableTemplateInFoo<int>()));
+}
+
+// Tests printing a user-defined recursive container type that has a <<
+// operator.
+TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) {
+  ::foo::PathLike x;
+  EXPECT_EQ("Streamable-PathLike", Print(x));
+  const ::foo::PathLike cx;
+  EXPECT_EQ("Streamable-PathLike", Print(cx));
+}
+
+// Tests printing user-defined types that have a PrintTo() function.
+TEST(PrintPrintableTypeTest, InUserNamespace) {
+  EXPECT_EQ("PrintableViaPrintTo: 0",
+            Print(::foo::PrintableViaPrintTo()));
+}
+
+// Tests printing a pointer to a user-defined type that has a <<
+// operator for its pointer.
+TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
+  ::foo::PointerPrintable x;
+  EXPECT_EQ("PointerPrintable*", Print(&x));
+}
+
+// Tests printing user-defined class template that have a PrintTo() function.
+TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
+  EXPECT_EQ("PrintableViaPrintToTemplate: 5",
+            Print(::foo::PrintableViaPrintToTemplate<int>(5)));
+}
+
+// Tests that the universal printer prints both the address and the
+// value of a reference.
+TEST(PrintReferenceTest, PrintsAddressAndValue) {
+  int n = 5;
+  EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
+
+  int a[2][3] = {
+    { 0, 1, 2 },
+    { 3, 4, 5 }
+  };
+  EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
+            PrintByRef(a));
+
+  const ::foo::UnprintableInFoo x;
+  EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
+            "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
+            PrintByRef(x));
+}
+
+// Tests that the universal printer prints a function pointer passed by
+// reference.
+TEST(PrintReferenceTest, HandlesFunctionPointer) {
+  void (*fp)(int n) = &MyFunction;
+  const std::string fp_pointer_string =
+      PrintPointer(reinterpret_cast<const void*>(&fp));
+  // We cannot directly cast &MyFunction to const void* because the
+  // standard disallows casting between pointers to functions and
+  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
+  // this limitation.
+  const std::string fp_string = PrintPointer(reinterpret_cast<const void*>(
+      reinterpret_cast<internal::BiggestInt>(fp)));
+  EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
+            PrintByRef(fp));
+}
+
+// Tests that the universal printer prints a member function pointer
+// passed by reference.
+TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
+  int (Foo::*p)(char ch) = &Foo::MyMethod;
+  EXPECT_TRUE(HasPrefix(
+      PrintByRef(p),
+      "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
+          Print(sizeof(p)) + "-byte object "));
+
+  char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
+  EXPECT_TRUE(HasPrefix(
+      PrintByRef(p2),
+      "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
+          Print(sizeof(p2)) + "-byte object "));
+}
+
+// Tests that the universal printer prints a member variable pointer
+// passed by reference.
+TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
+  int Foo::*p = &Foo::value;  // NOLINT
+  EXPECT_TRUE(HasPrefix(
+      PrintByRef(p),
+      "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
+}
+
+// Tests that FormatForComparisonFailureMessage(), which is used to print
+// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
+// fails, formats the operand in the desired way.
+
+// scalar
+TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
+  EXPECT_STREQ("123",
+               FormatForComparisonFailureMessage(123, 124).c_str());
+}
+
+// non-char pointer
+TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
+  int n = 0;
+  EXPECT_EQ(PrintPointer(&n),
+            FormatForComparisonFailureMessage(&n, &n).c_str());
+}
+
+// non-char array
+TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
+  // In expression 'array == x', 'array' is compared by pointer.
+  // Therefore we want to print an array operand as a pointer.
+  int n[] = { 1, 2, 3 };
+  EXPECT_EQ(PrintPointer(n),
+            FormatForComparisonFailureMessage(n, n).c_str());
+}
+
+// Tests formatting a char pointer when it's compared with another pointer.
+// In this case we want to print it as a raw pointer, as the comparison is by
+// pointer.
+
+// char pointer vs pointer
+TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
+  // In expression 'p == x', where 'p' and 'x' are (const or not) char
+  // pointers, the operands are compared by pointer.  Therefore we
+  // want to print 'p' as a pointer instead of a C string (we don't
+  // even know if it's supposed to point to a valid C string).
+
+  // const char*
+  const char* s = "hello";
+  EXPECT_EQ(PrintPointer(s),
+            FormatForComparisonFailureMessage(s, s).c_str());
+
+  // char*
+  char ch = 'a';
+  EXPECT_EQ(PrintPointer(&ch),
+            FormatForComparisonFailureMessage(&ch, &ch).c_str());
+}
+
+// wchar_t pointer vs pointer
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
+  // In expression 'p == x', where 'p' and 'x' are (const or not) char
+  // pointers, the operands are compared by pointer.  Therefore we
+  // want to print 'p' as a pointer instead of a wide C string (we don't
+  // even know if it's supposed to point to a valid wide C string).
+
+  // const wchar_t*
+  const wchar_t* s = L"hello";
+  EXPECT_EQ(PrintPointer(s),
+            FormatForComparisonFailureMessage(s, s).c_str());
+
+  // wchar_t*
+  wchar_t ch = L'a';
+  EXPECT_EQ(PrintPointer(&ch),
+            FormatForComparisonFailureMessage(&ch, &ch).c_str());
+}
+
+// Tests formatting a char pointer when it's compared to a string object.
+// In this case we want to print the char pointer as a C string.
+
+#if GTEST_HAS_GLOBAL_STRING
+// char pointer vs ::string
+TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
+  const char* s = "hello \"world";
+  EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(s, ::string()).c_str());
+
+  // char*
+  char str[] = "hi\1";
+  char* p = str;
+  EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(p, ::string()).c_str());
+}
+#endif
+
+// char pointer vs std::string
+TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
+  const char* s = "hello \"world";
+  EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(s, ::std::string()).c_str());
+
+  // char*
+  char str[] = "hi\1";
+  char* p = str;
+  EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(p, ::std::string()).c_str());
+}
+
+#if GTEST_HAS_GLOBAL_WSTRING
+// wchar_t pointer vs ::wstring
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
+  const wchar_t* s = L"hi \"world";
+  EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(s, ::wstring()).c_str());
+
+  // wchar_t*
+  wchar_t str[] = L"hi\1";
+  wchar_t* p = str;
+  EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(p, ::wstring()).c_str());
+}
+#endif
+
+#if GTEST_HAS_STD_WSTRING
+// wchar_t pointer vs std::wstring
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
+  const wchar_t* s = L"hi \"world";
+  EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
+
+  // wchar_t*
+  wchar_t str[] = L"hi\1";
+  wchar_t* p = str;
+  EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
+               FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
+}
+#endif
+
+// Tests formatting a char array when it's compared with a pointer or array.
+// In this case we want to print the array as a row pointer, as the comparison
+// is by pointer.
+
+// char array vs pointer
+TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
+  char str[] = "hi \"world\"";
+  char* p = NULL;
+  EXPECT_EQ(PrintPointer(str),
+            FormatForComparisonFailureMessage(str, p).c_str());
+}
+
+// char array vs char array
+TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
+  const char str[] = "hi \"world\"";
+  EXPECT_EQ(PrintPointer(str),
+            FormatForComparisonFailureMessage(str, str).c_str());
+}
+
+// wchar_t array vs pointer
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
+  wchar_t str[] = L"hi \"world\"";
+  wchar_t* p = NULL;
+  EXPECT_EQ(PrintPointer(str),
+            FormatForComparisonFailureMessage(str, p).c_str());
+}
+
+// wchar_t array vs wchar_t array
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
+  const wchar_t str[] = L"hi \"world\"";
+  EXPECT_EQ(PrintPointer(str),
+            FormatForComparisonFailureMessage(str, str).c_str());
+}
+
+// Tests formatting a char array when it's compared with a string object.
+// In this case we want to print the array as a C string.
+
+#if GTEST_HAS_GLOBAL_STRING
+// char array vs string
+TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
+  const char str[] = "hi \"w\0rld\"";
+  EXPECT_STREQ("\"hi \\\"w\"",  // The content should be escaped.
+                                // Embedded NUL terminates the string.
+               FormatForComparisonFailureMessage(str, ::string()).c_str());
+}
+#endif
+
+// char array vs std::string
+TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
+  const char str[] = "hi \"world\"";
+  EXPECT_STREQ("\"hi \\\"world\\\"\"",  // The content should be escaped.
+               FormatForComparisonFailureMessage(str, ::std::string()).c_str());
+}
+
+#if GTEST_HAS_GLOBAL_WSTRING
+// wchar_t array vs wstring
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
+  const wchar_t str[] = L"hi \"world\"";
+  EXPECT_STREQ("L\"hi \\\"world\\\"\"",  // The content should be escaped.
+               FormatForComparisonFailureMessage(str, ::wstring()).c_str());
+}
+#endif
+
+#if GTEST_HAS_STD_WSTRING
+// wchar_t array vs std::wstring
+TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
+  const wchar_t str[] = L"hi \"w\0rld\"";
+  EXPECT_STREQ(
+      "L\"hi \\\"w\"",  // The content should be escaped.
+                        // Embedded NUL terminates the string.
+      FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
+}
+#endif
+
+// Useful for testing PrintToString().  We cannot use EXPECT_EQ()
+// there as its implementation uses PrintToString().  The caller must
+// ensure that 'value' has no side effect.
+#define EXPECT_PRINT_TO_STRING_(value, expected_string)         \
+  EXPECT_TRUE(PrintToString(value) == (expected_string))        \
+      << " where " #value " prints as " << (PrintToString(value))
+
+TEST(PrintToStringTest, WorksForScalar) {
+  EXPECT_PRINT_TO_STRING_(123, "123");
+}
+
+TEST(PrintToStringTest, WorksForPointerToConstChar) {
+  const char* p = "hello";
+  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
+}
+
+TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
+  char s[] = "hello";
+  char* p = s;
+  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
+}
+
+TEST(PrintToStringTest, EscapesForPointerToConstChar) {
+  const char* p = "hello\n";
+  EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
+}
+
+TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
+  char s[] = "hello\1";
+  char* p = s;
+  EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
+}
+
+TEST(PrintToStringTest, WorksForArray) {
+  int n[3] = { 1, 2, 3 };
+  EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
+}
+
+TEST(PrintToStringTest, WorksForCharArray) {
+  char s[] = "hello";
+  EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
+}
+
+TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
+  const char str_with_nul[] = "hello\0 world";
+  EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
+
+  char mutable_str_with_nul[] = "hello\0 world";
+  EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
+}
+
+  TEST(PrintToStringTest, ContainsNonLatin) {
+  // Sanity test with valid UTF-8. Prints both in hex and as text.
+  std::string non_ascii_str = ::std::string("오전 4:30");
+  EXPECT_PRINT_TO_STRING_(non_ascii_str,
+                          "\"\\xEC\\x98\\xA4\\xEC\\xA0\\x84 4:30\"\n"
+                          "    As Text: \"오전 4:30\"");
+  non_ascii_str = ::std::string("From ä — ẑ");
+  EXPECT_PRINT_TO_STRING_(non_ascii_str,
+                          "\"From \\xC3\\xA4 \\xE2\\x80\\x94 \\xE1\\xBA\\x91\""
+                          "\n    As Text: \"From ä — ẑ\"");
+}
+
+TEST(IsValidUTF8Test, IllFormedUTF8) {
+  // The following test strings are ill-formed UTF-8 and are printed
+  // as hex only (or ASCII, in case of ASCII bytes) because IsValidUTF8() is
+  // expected to fail, thus output does not contain "As Text:".
+
+  static const char *const kTestdata[][2] = {
+    // 2-byte lead byte followed by a single-byte character.
+    {"\xC3\x74", "\"\\xC3t\""},
+    // Valid 2-byte character followed by an orphan trail byte.
+    {"\xC3\x84\xA4", "\"\\xC3\\x84\\xA4\""},
+    // Lead byte without trail byte.
+    {"abc\xC3", "\"abc\\xC3\""},
+    // 3-byte lead byte, single-byte character, orphan trail byte.
+    {"x\xE2\x70\x94", "\"x\\xE2p\\x94\""},
+    // Truncated 3-byte character.
+    {"\xE2\x80", "\"\\xE2\\x80\""},
+    // Truncated 3-byte character followed by valid 2-byte char.
+    {"\xE2\x80\xC3\x84", "\"\\xE2\\x80\\xC3\\x84\""},
+    // Truncated 3-byte character followed by a single-byte character.
+    {"\xE2\x80\x7A", "\"\\xE2\\x80z\""},
+    // 3-byte lead byte followed by valid 3-byte character.
+    {"\xE2\xE2\x80\x94", "\"\\xE2\\xE2\\x80\\x94\""},
+    // 4-byte lead byte followed by valid 3-byte character.
+    {"\xF0\xE2\x80\x94", "\"\\xF0\\xE2\\x80\\x94\""},
+    // Truncated 4-byte character.
+    {"\xF0\xE2\x80", "\"\\xF0\\xE2\\x80\""},
+     // Invalid UTF-8 byte sequences embedded in other chars.
+    {"abc\xE2\x80\x94\xC3\x74xyc", "\"abc\\xE2\\x80\\x94\\xC3txyc\""},
+    {"abc\xC3\x84\xE2\x80\xC3\x84xyz",
+     "\"abc\\xC3\\x84\\xE2\\x80\\xC3\\x84xyz\""},
+    // Non-shortest UTF-8 byte sequences are also ill-formed.
+    // The classics: xC0, xC1 lead byte.
+    {"\xC0\x80", "\"\\xC0\\x80\""},
+    {"\xC1\x81", "\"\\xC1\\x81\""},
+    // Non-shortest sequences.
+    {"\xE0\x80\x80", "\"\\xE0\\x80\\x80\""},
+    {"\xf0\x80\x80\x80", "\"\\xF0\\x80\\x80\\x80\""},
+    // Last valid code point before surrogate range, should be printed as text,
+    // too.
+    {"\xED\x9F\xBF", "\"\\xED\\x9F\\xBF\"\n    As Text: \"퟿\""},
+    // Start of surrogate lead. Surrogates are not printed as text.
+    {"\xED\xA0\x80", "\"\\xED\\xA0\\x80\""},
+    // Last non-private surrogate lead.
+    {"\xED\xAD\xBF", "\"\\xED\\xAD\\xBF\""},
+    // First private-use surrogate lead.
+    {"\xED\xAE\x80", "\"\\xED\\xAE\\x80\""},
+    // Last private-use surrogate lead.
+    {"\xED\xAF\xBF", "\"\\xED\\xAF\\xBF\""},
+    // Mid-point of surrogate trail.
+    {"\xED\xB3\xBF", "\"\\xED\\xB3\\xBF\""},
+    // First valid code point after surrogate range, should be printed as text,
+    // too.
+    {"\xEE\x80\x80", "\"\\xEE\\x80\\x80\"\n    As Text: \"\""}
+  };
+
+  for (int i = 0; i < int(sizeof(kTestdata)/sizeof(kTestdata[0])); ++i) {
+    EXPECT_PRINT_TO_STRING_(kTestdata[i][0], kTestdata[i][1]);
+  }
+}
+
+#undef EXPECT_PRINT_TO_STRING_
+
+TEST(UniversalTersePrintTest, WorksForNonReference) {
+  ::std::stringstream ss;
+  UniversalTersePrint(123, &ss);
+  EXPECT_EQ("123", ss.str());
+}
+
+TEST(UniversalTersePrintTest, WorksForReference) {
+  const int& n = 123;
+  ::std::stringstream ss;
+  UniversalTersePrint(n, &ss);
+  EXPECT_EQ("123", ss.str());
+}
+
+TEST(UniversalTersePrintTest, WorksForCString) {
+  const char* s1 = "abc";
+  ::std::stringstream ss1;
+  UniversalTersePrint(s1, &ss1);
+  EXPECT_EQ("\"abc\"", ss1.str());
+
+  char* s2 = const_cast<char*>(s1);
+  ::std::stringstream ss2;
+  UniversalTersePrint(s2, &ss2);
+  EXPECT_EQ("\"abc\"", ss2.str());
+
+  const char* s3 = NULL;
+  ::std::stringstream ss3;
+  UniversalTersePrint(s3, &ss3);
+  EXPECT_EQ("NULL", ss3.str());
+}
+
+TEST(UniversalPrintTest, WorksForNonReference) {
+  ::std::stringstream ss;
+  UniversalPrint(123, &ss);
+  EXPECT_EQ("123", ss.str());
+}
+
+TEST(UniversalPrintTest, WorksForReference) {
+  const int& n = 123;
+  ::std::stringstream ss;
+  UniversalPrint(n, &ss);
+  EXPECT_EQ("123", ss.str());
+}
+
+TEST(UniversalPrintTest, WorksForCString) {
+  const char* s1 = "abc";
+  ::std::stringstream ss1;
+  UniversalPrint(s1, &ss1);
+  EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str()));
+
+  char* s2 = const_cast<char*>(s1);
+  ::std::stringstream ss2;
+  UniversalPrint(s2, &ss2);
+  EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str()));
+
+  const char* s3 = NULL;
+  ::std::stringstream ss3;
+  UniversalPrint(s3, &ss3);
+  EXPECT_EQ("NULL", ss3.str());
+}
+
+TEST(UniversalPrintTest, WorksForCharArray) {
+  const char str[] = "\"Line\0 1\"\nLine 2";
+  ::std::stringstream ss1;
+  UniversalPrint(str, &ss1);
+  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
+
+  const char mutable_str[] = "\"Line\0 1\"\nLine 2";
+  ::std::stringstream ss2;
+  UniversalPrint(mutable_str, &ss2);
+  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
+}
+
+#if GTEST_HAS_TR1_TUPLE
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) {
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::tr1::make_tuple());
+  EXPECT_EQ(0u, result.size());
+}
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) {
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::tr1::make_tuple(1));
+  ASSERT_EQ(1u, result.size());
+  EXPECT_EQ("1", result[0]);
+}
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) {
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::tr1::make_tuple(1, 'a'));
+  ASSERT_EQ(2u, result.size());
+  EXPECT_EQ("1", result[0]);
+  EXPECT_EQ("'a' (97, 0x61)", result[1]);
+}
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) {
+  const int n = 1;
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::tr1::tuple<const int&, const char*>(n, "a"));
+  ASSERT_EQ(2u, result.size());
+  EXPECT_EQ("1", result[0]);
+  EXPECT_EQ("\"a\"", result[1]);
+}
+
+#endif  // GTEST_HAS_TR1_TUPLE
+
+#if GTEST_HAS_STD_TUPLE_
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
+  Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
+  EXPECT_EQ(0u, result.size());
+}
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::make_tuple(1));
+  ASSERT_EQ(1u, result.size());
+  EXPECT_EQ("1", result[0]);
+}
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::make_tuple(1, 'a'));
+  ASSERT_EQ(2u, result.size());
+  EXPECT_EQ("1", result[0]);
+  EXPECT_EQ("'a' (97, 0x61)", result[1]);
+}
+
+TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
+  const int n = 1;
+  Strings result = UniversalTersePrintTupleFieldsToStrings(
+      ::std::tuple<const int&, const char*>(n, "a"));
+  ASSERT_EQ(2u, result.size());
+  EXPECT_EQ("1", result[0]);
+  EXPECT_EQ("\"a\"", result[1]);
+}
+
+#endif  // GTEST_HAS_STD_TUPLE_
+
+#if GTEST_HAS_ABSL
+
+TEST(PrintOptionalTest, Basic) {
+  absl::optional<int> value;
+  EXPECT_EQ("(nullopt)", PrintToString(value));
+  value = {7};
+  EXPECT_EQ("(7)", PrintToString(value));
+  EXPECT_EQ("(1.1)", PrintToString(absl::optional<double>{1.1}));
+  EXPECT_EQ("(\"A\")", PrintToString(absl::optional<std::string>{"A"}));
+}
+
+struct NonPrintable {
+  unsigned char contents = 17;
+};
+
+TEST(PrintOneofTest, Basic) {
+  using Type = absl::variant<int, StreamableInGlobal, NonPrintable>;
+  EXPECT_EQ("('int' with value 7)", PrintToString(Type(7)));
+  EXPECT_EQ("('StreamableInGlobal' with value StreamableInGlobal)",
+            PrintToString(Type(StreamableInGlobal{})));
+  EXPECT_EQ(
+      "('testing::gtest_printers_test::NonPrintable' with value 1-byte object "
+      "<11>)",
+      PrintToString(Type(NonPrintable{})));
+}
+#endif  // GTEST_HAS_ABSL
+
+}  // namespace gtest_printers_test
+}  // namespace testing