/* * Copyright (c) 2003-2017 Lev Walkin . * All rights reserved. * Redistribution and modifications are permitted subject to BSD license. */ #include #include #include /* * Number of bytes left for this structure. * (ctx->left) indicates the number of bytes _transferred_ for the structure. * (size) contains the number of bytes in the buffer passed. */ #define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left) /* * If the subprocessor function returns with an indication that it wants * more data, it may well be a fatal decoding problem, because the * size is constrained by the 's L, even if the buffer size allows * reading more data. * For example, consider the buffer containing the following TLVs: * ... * The TLV length clearly indicates that one byte is expected in V, but * if the V processor returns with "want more data" even if the buffer * contains way more data than the V processor have seen. */ #define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size) /* * This macro "eats" the part of the buffer which is definitely "consumed", * i.e. was correctly converted into local representation or rightfully skipped. */ #undef ADVANCE #define ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ ptr = ((const char *)ptr) + num;\ size -= num; \ if(ctx->left >= 0) \ ctx->left -= num; \ consumed_myself += num; \ } while(0) /* * Switch to the next phase of parsing. */ #undef NEXT_PHASE #undef PHASE_OUT #define NEXT_PHASE(ctx) do { \ ctx->phase++; \ ctx->step = 0; \ } while(0) #define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0) /* * Return a standardized complex structure. */ #undef RETURN #define RETURN(_code) do { \ rval.code = _code; \ rval.consumed = consumed_myself;\ return rval; \ } while(0) /* * The decoder of the SET OF type. */ asn_dec_rval_t SET_OF_decode_ber(const asn_codec_ctx_t *opt_codec_ctx, const asn_TYPE_descriptor_t *td, void **struct_ptr, const void *ptr, size_t size, int tag_mode) { /* * Bring closer parts of structure description. */ const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; const asn_TYPE_member_t *elm = td->elements; /* Single one */ /* * Parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ ber_tlv_tag_t tlv_tag; /* T from TLV */ asn_dec_rval_t rval; /* Return code from subparsers */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ ASN_DEBUG("Decoding %s as SET OF", td->name); /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) { RETURN(RC_FAIL); } } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Start to parse where left previously */ switch(ctx->phase) { case 0: /* * PHASE 0. * Check that the set of tags associated with given structure * perfectly fits our expectations. */ rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size, tag_mode, 1, &ctx->left, 0); if(rval.code != RC_OK) { ASN_DEBUG("%s tagging check failed: %d", td->name, rval.code); return rval; } if(ctx->left >= 0) ctx->left += rval.consumed; /* ?Substracted below! */ ADVANCE(rval.consumed); ASN_DEBUG("Structure consumes %ld bytes, " "buffer %ld", (long)ctx->left, (long)size); NEXT_PHASE(ctx); /* Fall through */ case 1: /* * PHASE 1. * From the place where we've left it previously, * try to decode the next item. */ for(;; ctx->step = 0) { ssize_t tag_len; /* Length of TLV's T */ if(ctx->step & 1) goto microphase2; /* * MICROPHASE 1: Synchronize decoding. */ if(ctx->left == 0) { ASN_DEBUG("End of SET OF %s", td->name); /* * No more things to decode. * Exit out of here. */ PHASE_OUT(ctx); RETURN(RC_OK); } /* * Fetch the T from TLV. */ tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag); switch(tag_len) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) { if(LEFT < 2) { if(SIZE_VIOLATION) RETURN(RC_FAIL); else RETURN(RC_WMORE); } else if(((const uint8_t *)ptr)[1] == 0) { /* * Found the terminator of the * indefinite length structure. */ break; } } /* Outmost tag may be unknown and cannot be fetched/compared */ if(elm->tag != (ber_tlv_tag_t)-1) { if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) { /* * The new list member of expected type has arrived. */ } else { ASN_DEBUG("Unexpected tag %s fixed SET OF %s", ber_tlv_tag_string(tlv_tag), td->name); ASN_DEBUG("%s SET OF has tag %s", td->name, ber_tlv_tag_string(elm->tag)); RETURN(RC_FAIL); } } /* * MICROPHASE 2: Invoke the member-specific decoder. */ ctx->step |= 1; /* Confirm entering next microphase */ microphase2: /* * Invoke the member fetch routine according to member's type */ rval = elm->type->op->ber_decoder(opt_codec_ctx, elm->type, &ctx->ptr, ptr, LEFT, 0); ASN_DEBUG("In %s SET OF %s code %d consumed %d", td->name, elm->type->name, rval.code, (int)rval.consumed); switch(rval.code) { case RC_OK: { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); else ctx->ptr = 0; } break; case RC_WMORE: /* More data expected */ if(!SIZE_VIOLATION) { ADVANCE(rval.consumed); RETURN(RC_WMORE); } /* Fall through */ case RC_FAIL: /* Fatal error */ ASN_STRUCT_FREE(*elm->type, ctx->ptr); ctx->ptr = 0; RETURN(RC_FAIL); } /* switch(rval) */ ADVANCE(rval.consumed); } /* for(all list members) */ NEXT_PHASE(ctx); case 2: /* * Read in all "end of content" TLVs. */ while(ctx->left < 0) { if(LEFT < 2) { if(LEFT > 0 && ((const char *)ptr)[0] != 0) { /* Unexpected tag */ RETURN(RC_FAIL); } else { RETURN(RC_WMORE); } } if(((const char *)ptr)[0] == 0 && ((const char *)ptr)[1] == 0) { ADVANCE(2); ctx->left++; } else { RETURN(RC_FAIL); } } PHASE_OUT(ctx); } RETURN(RC_OK); } /* * Internally visible buffer holding a single encoded element. */ struct _el_buffer { uint8_t *buf; size_t length; size_t allocated_size; unsigned bits_unused; }; /* Append bytes to the above structure */ static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) { struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr; if(el_buf->length + size > el_buf->allocated_size) { size_t new_size = el_buf->allocated_size ? el_buf->allocated_size : 8; void *p; do { new_size <<= 2; } while(el_buf->length + size > new_size); p = REALLOC(el_buf->buf, new_size); if(p) { el_buf->buf = p; el_buf->allocated_size = new_size; } else { return -1; } } memcpy(el_buf->buf + el_buf->length, buffer, size); el_buf->length += size; return 0; } static void assert_unused_bits(const struct _el_buffer* p) { if(p->length) { assert((p->buf[p->length-1] & ~(0xff << p->bits_unused)) == 0); } else { assert(p->bits_unused == 0); } } static int _el_buf_cmp(const void *ap, const void *bp) { const struct _el_buffer *a = (const struct _el_buffer *)ap; const struct _el_buffer *b = (const struct _el_buffer *)bp; size_t common_len; int ret = 0; if(a->length < b->length) common_len = a->length; else common_len = b->length; if (a->buf && b->buf) { ret = memcmp(a->buf, b->buf, common_len); } if(ret == 0) { if(a->length < b->length) ret = -1; else if(a->length > b->length) ret = 1; /* Ignore unused bits. */ assert_unused_bits(a); assert_unused_bits(b); } return ret; } static void SET_OF__encode_sorted_free(struct _el_buffer *el_buf, size_t count) { size_t i; for(i = 0; i < count; i++) { FREEMEM(el_buf[i].buf); } FREEMEM(el_buf); } enum SET_OF__encode_method { SOES_DER, /* Distinguished Encoding Rules */ SOES_CUPER /* Canonical Unaligned Packed Encoding Rules */ }; static struct _el_buffer * SET_OF__encode_sorted(const asn_TYPE_member_t *elm, const asn_anonymous_set_ *list, enum SET_OF__encode_method method) { struct _el_buffer *encoded_els; int edx; encoded_els = (struct _el_buffer *)CALLOC(list->count, sizeof(encoded_els[0])); if(encoded_els == NULL) { return NULL; } /* * Encode all members. */ for(edx = 0; edx < list->count; edx++) { const void *memb_ptr = list->array[edx]; struct _el_buffer *encoding_el = &encoded_els[edx]; asn_enc_rval_t erval = {0,0,0}; if(!memb_ptr) break; /* * Encode the member into the prepared space. */ switch(method) { case SOES_DER: erval = elm->type->op->der_encoder(elm->type, memb_ptr, 0, elm->tag, _el_addbytes, encoding_el); break; case SOES_CUPER: erval = uper_encode(elm->type, elm->encoding_constraints.per_constraints, memb_ptr, _el_addbytes, encoding_el); if(erval.encoded != -1) { size_t extra_bits = erval.encoded % 8; assert(encoding_el->length == (size_t)(erval.encoded + 7) / 8); encoding_el->bits_unused = (8 - extra_bits) & 0x7; } break; default: assert(!"Unreachable"); break; } if(erval.encoded < 0) break; } if(edx == list->count) { /* * Sort the encoded elements according to their encoding. */ qsort(encoded_els, list->count, sizeof(encoded_els[0]), _el_buf_cmp); return encoded_els; } else { SET_OF__encode_sorted_free(encoded_els, edx); return NULL; } } /* * The DER encoder of the SET OF type. */ asn_enc_rval_t SET_OF_encode_der(const asn_TYPE_descriptor_t *td, const void *sptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { const asn_TYPE_member_t *elm = td->elements; const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); size_t computed_size = 0; ssize_t encoding_size = 0; struct _el_buffer *encoded_els; int edx; ASN_DEBUG("Estimating size for SET OF %s", td->name); /* * Gather the length of the underlying members sequence. */ for(edx = 0; edx < list->count; edx++) { void *memb_ptr = list->array[edx]; asn_enc_rval_t erval = {0,0,0}; if(!memb_ptr) ASN__ENCODE_FAILED; erval = elm->type->op->der_encoder(elm->type, memb_ptr, 0, elm->tag, 0, 0); if(erval.encoded == -1) return erval; computed_size += erval.encoded; } /* * Encode the TLV for the sequence itself. */ encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag, cb, app_key); if(encoding_size < 0) { ASN__ENCODE_FAILED; } computed_size += encoding_size; if(!cb || list->count == 0) { asn_enc_rval_t erval = {0,0,0}; erval.encoded = computed_size; ASN__ENCODED_OK(erval); } ASN_DEBUG("Encoding members of %s SET OF", td->name); /* * DER mandates dynamic sorting of the SET OF elements * according to their encodings. Build an array of the * encoded elements. */ encoded_els = SET_OF__encode_sorted(elm, list, SOES_DER); /* * Report encoded elements to the application. * Dispose of temporary sorted members table. */ for(edx = 0; edx < list->count; edx++) { struct _el_buffer *encoded_el = &encoded_els[edx]; /* Report encoded chunks to the application */ if(cb(encoded_el->buf, encoded_el->length, app_key) < 0) { break; } else { encoding_size += encoded_el->length; } } SET_OF__encode_sorted_free(encoded_els, list->count); if(edx == list->count) { asn_enc_rval_t erval = {0,0,0}; assert(computed_size == (size_t)encoding_size); erval.encoded = computed_size; ASN__ENCODED_OK(erval); } else { ASN__ENCODE_FAILED; } } #undef XER_ADVANCE #define XER_ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ buf_ptr = ((const char *)buf_ptr) + num;\ size -= num; \ consumed_myself += num; \ } while(0) /* * Decode the XER (XML) data. */ asn_dec_rval_t SET_OF_decode_xer(const asn_codec_ctx_t *opt_codec_ctx, const asn_TYPE_descriptor_t *td, void **struct_ptr, const char *opt_mname, const void *buf_ptr, size_t size) { /* * Bring closer parts of structure description. */ const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; const asn_TYPE_member_t *element = td->elements; const char *elm_tag; const char *xml_tag = opt_mname ? opt_mname : td->xml_tag; /* * ... and parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ asn_dec_rval_t rval = {RC_OK, 0};/* Return value from a decoder */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) RETURN(RC_FAIL); } /* Which tag is expected for the downstream */ if(specs->as_XMLValueList) { elm_tag = (specs->as_XMLValueList == 1) ? 0 : ""; } else { elm_tag = (*element->name) ? element->name : element->type->xml_tag; } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Phases of XER/XML processing: * Phase 0: Check that the opening tag matches our expectations. * Phase 1: Processing body and reacting on closing tag. * Phase 2: Processing inner type. */ for(; ctx->phase <= 2;) { pxer_chunk_type_e ch_type; /* XER chunk type */ ssize_t ch_size; /* Chunk size */ xer_check_tag_e tcv; /* Tag check value */ /* * Go inside the inner member of a set. */ if(ctx->phase == 2) { asn_dec_rval_t tmprval = {RC_OK, 0}; /* Invoke the inner type decoder, m.b. multiple times */ ASN_DEBUG("XER/SET OF element [%s]", elm_tag); tmprval = element->type->op->xer_decoder(opt_codec_ctx, element->type, &ctx->ptr, elm_tag, buf_ptr, size); if(tmprval.code == RC_OK) { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); ctx->ptr = 0; XER_ADVANCE(tmprval.consumed); } else { XER_ADVANCE(tmprval.consumed); RETURN(tmprval.code); } ctx->phase = 1; /* Back to body processing */ ASN_DEBUG("XER/SET OF phase => %d", ctx->phase); /* Fall through */ } /* * Get the next part of the XML stream. */ ch_size = xer_next_token(&ctx->context, buf_ptr, size, &ch_type); if(ch_size == -1) { RETURN(RC_FAIL); } else { switch(ch_type) { case PXER_WMORE: RETURN(RC_WMORE); case PXER_COMMENT: /* Got XML comment */ case PXER_TEXT: /* Ignore free-standing text */ XER_ADVANCE(ch_size); /* Skip silently */ continue; case PXER_TAG: break; /* Check the rest down there */ } } tcv = xer_check_tag(buf_ptr, ch_size, xml_tag); ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s", tcv, ctx->phase, xml_tag); switch(tcv) { case XCT_CLOSING: if(ctx->phase == 0) break; ctx->phase = 0; /* Fall through */ case XCT_BOTH: if(ctx->phase == 0) { /* No more things to decode */ XER_ADVANCE(ch_size); ctx->phase = 3; /* Phase out */ RETURN(RC_OK); } /* Fall through */ case XCT_OPENING: if(ctx->phase == 0) { XER_ADVANCE(ch_size); ctx->phase = 1; /* Processing body phase */ continue; } /* Fall through */ case XCT_UNKNOWN_OP: case XCT_UNKNOWN_BO: ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase); if(ctx->phase == 1) { /* * Process a single possible member. */ ctx->phase = 2; continue; } /* Fall through */ default: break; } ASN_DEBUG("Unexpected XML tag in SET OF"); break; } ctx->phase = 3; /* "Phase out" on hard failure */ RETURN(RC_FAIL); } typedef struct xer_tmp_enc_s { void *buffer; size_t offset; size_t size; } xer_tmp_enc_t; static int SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) { xer_tmp_enc_t *t = (xer_tmp_enc_t *)key; if(t->offset + size >= t->size) { size_t newsize = (t->size << 2) + size; void *p = REALLOC(t->buffer, newsize); if(!p) return -1; t->buffer = p; t->size = newsize; } memcpy((char *)t->buffer + t->offset, buffer, size); t->offset += size; return 0; } static int SET_OF_xer_order(const void *aptr, const void *bptr) { const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr; const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr; size_t minlen = a->offset; int ret; if(b->offset < minlen) minlen = b->offset; /* Well-formed UTF-8 has this nice lexicographical property... */ ret = memcmp(a->buffer, b->buffer, minlen); if(ret != 0) return ret; if(a->offset == b->offset) return 0; if(a->offset == minlen) return -1; return 1; } asn_enc_rval_t SET_OF_encode_xer(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, void *app_key) { asn_enc_rval_t er = {0,0,0}; const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; const asn_TYPE_member_t *elm = td->elements; const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); const char *mname = specs->as_XMLValueList ? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag); size_t mlen = mname ? strlen(mname) : 0; int xcan = (flags & XER_F_CANONICAL); xer_tmp_enc_t *encs = 0; size_t encs_count = 0; void *original_app_key = app_key; asn_app_consume_bytes_f *original_cb = cb; int i; if(!sptr) ASN__ENCODE_FAILED; if(xcan) { encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0])); if(!encs) ASN__ENCODE_FAILED; cb = SET_OF_encode_xer_callback; } er.encoded = 0; for(i = 0; i < list->count; i++) { asn_enc_rval_t tmper = {0,0,0}; void *memb_ptr = list->array[i]; if(!memb_ptr) continue; if(encs) { memset(&encs[encs_count], 0, sizeof(encs[0])); app_key = &encs[encs_count]; encs_count++; } if(mname) { if(!xcan) ASN__TEXT_INDENT(1, ilevel); ASN__CALLBACK3("<", 1, mname, mlen, ">", 1); } if(!xcan && specs->as_XMLValueList == 1) ASN__TEXT_INDENT(1, ilevel + 1); tmper = elm->type->op->xer_encoder(elm->type, memb_ptr, ilevel + (specs->as_XMLValueList != 2), flags, cb, app_key); if(tmper.encoded == -1) return tmper; er.encoded += tmper.encoded; if(tmper.encoded == 0 && specs->as_XMLValueList) { const char *name = elm->type->xml_tag; size_t len = strlen(name); ASN__CALLBACK3("<", 1, name, len, "/>", 2); } if(mname) { ASN__CALLBACK3("", 1); } } if(!xcan) ASN__TEXT_INDENT(1, ilevel - 1); if(encs) { xer_tmp_enc_t *enc = encs; xer_tmp_enc_t *end = encs + encs_count; ssize_t control_size = 0; er.encoded = 0; cb = original_cb; app_key = original_app_key; qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order); for(; enc < end; enc++) { ASN__CALLBACK(enc->buffer, enc->offset); FREEMEM(enc->buffer); enc->buffer = 0; control_size += enc->offset; } assert(control_size == er.encoded); } goto cleanup; cb_failed: ASN__ENCODE_FAILED; cleanup: if(encs) { size_t n; for(n = 0; n < encs_count; n++) { FREEMEM(encs[n].buffer); } FREEMEM(encs); } ASN__ENCODED_OK(er); } int SET_OF_print(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, asn_app_consume_bytes_f *cb, void *app_key) { asn_TYPE_member_t *elm = td->elements; const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); int ret; int i; if(!sptr) return (cb("", 8, app_key) < 0) ? -1 : 0; /* Dump preamble */ if(cb(td->name, strlen(td->name), app_key) < 0 || cb(" ::= {", 6, app_key) < 0) return -1; for(i = 0; i < list->count; i++) { const void *memb_ptr = list->array[i]; if(!memb_ptr) continue; _i_INDENT(1); ret = elm->type->op->print_struct(elm->type, memb_ptr, ilevel + 1, cb, app_key); if(ret) return ret; } ilevel--; _i_INDENT(1); return (cb("}", 1, app_key) < 0) ? -1 : 0; } void SET_OF_free(const asn_TYPE_descriptor_t *td, void *ptr, enum asn_struct_free_method method) { if(td && ptr) { const asn_SET_OF_specifics_t *specs; asn_TYPE_member_t *elm = td->elements; asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr); asn_struct_ctx_t *ctx; /* Decoder context */ int i; /* * Could not use set_of_empty() because of (*free) * incompatibility. */ for(i = 0; i < list->count; i++) { void *memb_ptr = list->array[i]; if(memb_ptr) ASN_STRUCT_FREE(*elm->type, memb_ptr); } list->count = 0; /* No meaningful elements left */ asn_set_empty(list); /* Remove (list->array) */ specs = (const asn_SET_OF_specifics_t *)td->specifics; ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset); if(ctx->ptr) { ASN_STRUCT_FREE(*elm->type, ctx->ptr); ctx->ptr = 0; } switch(method) { case ASFM_FREE_EVERYTHING: FREEMEM(ptr); break; case ASFM_FREE_UNDERLYING: break; case ASFM_FREE_UNDERLYING_AND_RESET: memset(ptr, 0, specs->struct_size); break; } } } int SET_OF_constraint(const asn_TYPE_descriptor_t *td, const void *sptr, asn_app_constraint_failed_f *ctfailcb, void *app_key) { const asn_TYPE_member_t *elm = td->elements; asn_constr_check_f *constr; const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); int i; if(!sptr) { ASN__CTFAIL(app_key, td, sptr, "%s: value not given (%s:%d)", td->name, __FILE__, __LINE__); return -1; } constr = elm->encoding_constraints.general_constraints; if(!constr) constr = elm->type->encoding_constraints.general_constraints; /* * Iterate over the members of an array. * Validate each in turn, until one fails. */ for(i = 0; i < list->count; i++) { const void *memb_ptr = list->array[i]; int ret; if(!memb_ptr) continue; ret = constr(elm->type, memb_ptr, ctfailcb, app_key); if(ret) return ret; } return 0; } #ifndef ASN_DISABLE_PER_SUPPORT asn_dec_rval_t SET_OF_decode_uper(const asn_codec_ctx_t *opt_codec_ctx, const asn_TYPE_descriptor_t *td, const asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_dec_rval_t rv = {RC_OK, 0}; const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; const asn_TYPE_member_t *elm = td->elements; /* Single one */ void *st = *sptr; asn_anonymous_set_ *list; const asn_per_constraint_t *ct; int repeat = 0; ssize_t nelems; if(ASN__STACK_OVERFLOW_CHECK(opt_codec_ctx)) ASN__DECODE_FAILED; /* * Create the target structure if it is not present already. */ if(!st) { st = *sptr = CALLOC(1, specs->struct_size); if(!st) ASN__DECODE_FAILED; } list = _A_SET_FROM_VOID(st); /* Figure out which constraints to use */ if(constraints) ct = &constraints->size; else if(td->encoding_constraints.per_constraints) ct = &td->encoding_constraints.per_constraints->size; else ct = 0; if(ct && ct->flags & APC_EXTENSIBLE) { int value = per_get_few_bits(pd, 1); if(value < 0) ASN__DECODE_STARVED; if(value) ct = 0; /* Not restricted! */ } if(ct && ct->effective_bits >= 0) { /* X.691, #19.5: No length determinant */ nelems = per_get_few_bits(pd, ct->effective_bits); ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s", (long)nelems, ct->lower_bound, td->name); if(nelems < 0) ASN__DECODE_STARVED; nelems += ct->lower_bound; } else { nelems = -1; } do { int i; if(nelems < 0) { nelems = uper_get_length(pd, -1, 0, &repeat); ASN_DEBUG("Got to decode %" ASN_PRI_SSIZE " elements (eff %d)", nelems, (int)(ct ? ct->effective_bits : -1)); if(nelems < 0) ASN__DECODE_STARVED; } for(i = 0; i < nelems; i++) { void *ptr = 0; ASN_DEBUG("SET OF %s decoding", elm->type->name); rv = elm->type->op->uper_decoder(opt_codec_ctx, elm->type, elm->encoding_constraints.per_constraints, &ptr, pd); ASN_DEBUG("%s SET OF %s decoded %d, %p", td->name, elm->type->name, rv.code, ptr); if(rv.code == RC_OK) { if(ASN_SET_ADD(list, ptr) == 0) { if(rv.consumed == 0 && nelems > 200) { /* Protect from SET OF NULL compression bombs. */ ASN__DECODE_FAILED; } continue; } ASN_DEBUG("Failed to add element into %s", td->name); /* Fall through */ rv.code = RC_FAIL; } else { ASN_DEBUG("Failed decoding %s of %s (SET OF)", elm->type->name, td->name); } if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); return rv; } nelems = -1; /* Allow uper_get_length() */ } while(repeat); ASN_DEBUG("Decoded %s as SET OF", td->name); rv.code = RC_OK; rv.consumed = 0; return rv; } asn_enc_rval_t SET_OF_encode_uper(const asn_TYPE_descriptor_t *td, const asn_per_constraints_t *constraints, const void *sptr, asn_per_outp_t *po) { const asn_anonymous_set_ *list; const asn_per_constraint_t *ct; const asn_TYPE_member_t *elm = td->elements; struct _el_buffer *encoded_els; asn_enc_rval_t er = {0,0,0}; size_t encoded_edx; if(!sptr) ASN__ENCODE_FAILED; list = _A_CSET_FROM_VOID(sptr); er.encoded = 0; ASN_DEBUG("Encoding %s as SEQUENCE OF (%d)", td->name, list->count); if(constraints) ct = &constraints->size; else if(td->encoding_constraints.per_constraints) ct = &td->encoding_constraints.per_constraints->size; else ct = 0; /* If extensible constraint, check if size is in root */ if(ct) { int not_in_root = (list->count < ct->lower_bound || list->count > ct->upper_bound); ASN_DEBUG("lb %ld ub %ld %s", ct->lower_bound, ct->upper_bound, ct->flags & APC_EXTENSIBLE ? "ext" : "fix"); if(ct->flags & APC_EXTENSIBLE) { /* Declare whether size is in extension root */ if(per_put_few_bits(po, not_in_root, 1)) ASN__ENCODE_FAILED; if(not_in_root) ct = 0; } else if(not_in_root && ct->effective_bits >= 0) { ASN__ENCODE_FAILED; } } if(ct && ct->effective_bits >= 0) { /* X.691, #19.5: No length determinant */ if(per_put_few_bits(po, list->count - ct->lower_bound, ct->effective_bits)) ASN__ENCODE_FAILED; } else if(list->count == 0) { /* When the list is empty add only the length determinant * X.691, #20.6 and #11.9.4.1 */ if (uper_put_length(po, 0, 0)) { ASN__ENCODE_FAILED; } ASN__ENCODED_OK(er); } /* * Canonical UPER #22.1 mandates dynamic sorting of the SET OF elements * according to their encodings. Build an array of the encoded elements. */ encoded_els = SET_OF__encode_sorted(elm, list, SOES_CUPER); for(encoded_edx = 0; (ssize_t)encoded_edx < list->count;) { ssize_t may_encode; size_t edx; int need_eom = 0; if(ct && ct->effective_bits >= 0) { may_encode = list->count; } else { may_encode = uper_put_length(po, list->count - encoded_edx, &need_eom); if(may_encode < 0) ASN__ENCODE_FAILED; } for(edx = encoded_edx; edx < encoded_edx + may_encode; edx++) { const struct _el_buffer *el = &encoded_els[edx]; if(asn_put_many_bits(po, el->buf, (8 * el->length) - el->bits_unused) < 0) { break; } } if(need_eom && uper_put_length(po, 0, 0)) ASN__ENCODE_FAILED; /* End of Message length */ encoded_edx += may_encode; } SET_OF__encode_sorted_free(encoded_els, list->count); if((ssize_t)encoded_edx == list->count) { ASN__ENCODED_OK(er); } else { ASN__ENCODE_FAILED; } } asn_dec_rval_t SET_OF_decode_aper(const asn_codec_ctx_t *opt_codec_ctx, const asn_TYPE_descriptor_t *td, const asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_dec_rval_t rv = {RC_OK, 0}; const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; const asn_TYPE_member_t *elm = td->elements; /* Single one */ void *st = *sptr; asn_anonymous_set_ *list; const asn_per_constraint_t *ct; int repeat = 0; ssize_t nelems; if(ASN__STACK_OVERFLOW_CHECK(opt_codec_ctx)) ASN__DECODE_FAILED; /* * Create the target structure if it is not present already. */ if(!st) { st = *sptr = CALLOC(1, specs->struct_size); if(!st) ASN__DECODE_FAILED; } list = _A_SET_FROM_VOID(st); /* Figure out which constraints to use */ if(constraints) ct = &constraints->size; else if(td->encoding_constraints.per_constraints) ct = &td->encoding_constraints.per_constraints->size; else ct = 0; if(ct && ct->flags & APC_EXTENSIBLE) { int value = per_get_few_bits(pd, 1); if(value < 0) ASN__DECODE_STARVED; if(value) ct = 0; /* Not restricted! */ } if(ct && ct->effective_bits >= 0) { /* X.691, #19.5: No length determinant */ nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound + 1); ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s", (long)nelems, ct->lower_bound, td->name); if(nelems < 0) ASN__DECODE_STARVED; nelems += ct->lower_bound; } else { nelems = -1; } do { int i; if(nelems < 0) { nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1, ct ? ct->effective_bits : -1, &repeat); ASN_DEBUG("Got to decode %d elements (eff %d)", (int)nelems, (int)(ct ? ct->effective_bits : -1)); if(nelems < 0) ASN__DECODE_STARVED; } for(i = 0; i < nelems; i++) { void *ptr = 0; ASN_DEBUG("SET OF %s decoding", elm->type->name); rv = elm->type->op->aper_decoder(opt_codec_ctx, elm->type, elm->encoding_constraints.per_constraints, &ptr, pd); ASN_DEBUG("%s SET OF %s decoded %d, %p", td->name, elm->type->name, rv.code, ptr); if(rv.code == RC_OK) { if(ASN_SET_ADD(list, ptr) == 0) continue; ASN_DEBUG("Failed to add element into %s", td->name); /* Fall through */ rv.code = RC_FAIL; } else { ASN_DEBUG("Failed decoding %s of %s (SET OF)", elm->type->name, td->name); } if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); return rv; } nelems = -1; /* Allow uper_get_length() */ } while(repeat); ASN_DEBUG("Decoded %s as SET OF", td->name); rv.code = RC_OK; rv.consumed = 0; return rv; } #endif /* ASN_DISABLE_PER_SUPPORT */ struct comparable_ptr { const asn_TYPE_descriptor_t *td; const void *sptr; }; static int SET_OF__compare_cb(const void *aptr, const void *bptr) { const struct comparable_ptr *a = aptr; const struct comparable_ptr *b = bptr; assert(a->td == b->td); return a->td->op->compare_struct(a->td, a->sptr, b->sptr); } int SET_OF_compare(const asn_TYPE_descriptor_t *td, const void *aptr, const void *bptr) { const asn_anonymous_set_ *a = _A_CSET_FROM_VOID(aptr); const asn_anonymous_set_ *b = _A_CSET_FROM_VOID(bptr); if(a && b) { struct comparable_ptr *asorted; struct comparable_ptr *bsorted; ssize_t common_length; ssize_t idx; if(a->count == 0) { if(b->count) return -1; return 0; } else if(b->count == 0) { return 1; } asorted = MALLOC(a->count * sizeof(asorted[0])); bsorted = MALLOC(b->count * sizeof(bsorted[0])); if(!asorted || !bsorted) { FREEMEM(asorted); FREEMEM(bsorted); return -1; } for(idx = 0; idx < a->count; idx++) { asorted[idx].td = td->elements->type; asorted[idx].sptr = a->array[idx]; } for(idx = 0; idx < b->count; idx++) { bsorted[idx].td = td->elements->type; bsorted[idx].sptr = b->array[idx]; } qsort(asorted, a->count, sizeof(asorted[0]), SET_OF__compare_cb); qsort(bsorted, b->count, sizeof(bsorted[0]), SET_OF__compare_cb); common_length = (a->count < b->count ? a->count : b->count); for(idx = 0; idx < common_length; idx++) { int ret = td->elements->type->op->compare_struct( td->elements->type, asorted[idx].sptr, bsorted[idx].sptr); if(ret) { FREEMEM(asorted); FREEMEM(bsorted); return ret; } } FREEMEM(asorted); FREEMEM(bsorted); if(idx < b->count) /* more elements in b */ return -1; /* a is shorter, so put it first */ if(idx < a->count) return 1; } else if(!a) { return -1; } else if(!b) { return 1; } return 0; } asn_TYPE_operation_t asn_OP_SET_OF = { SET_OF_free, SET_OF_print, SET_OF_compare, SET_OF_decode_ber, SET_OF_encode_der, SET_OF_decode_xer, SET_OF_encode_xer, #ifdef ASN_DISABLE_OER_SUPPORT 0, 0, #else SET_OF_decode_oer, SET_OF_encode_oer, #endif #ifdef ASN_DISABLE_PER_SUPPORT 0, 0, 0, 0, #else SET_OF_decode_uper, SET_OF_encode_uper, SET_OF_decode_aper, 0, /* SET_OF_encode_aper */ #endif /* ASN_DISABLE_PER_SUPPORT */ SET_OF_random_fill, 0 /* Use generic outmost tag fetcher */ }; asn_random_fill_result_t SET_OF_random_fill(const asn_TYPE_descriptor_t *td, void **sptr, const asn_encoding_constraints_t *constraints, size_t max_length) { const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; asn_random_fill_result_t res_ok = {ARFILL_OK, 0}; asn_random_fill_result_t result_failed = {ARFILL_FAILED, 0}; asn_random_fill_result_t result_skipped = {ARFILL_SKIPPED, 0}; const asn_TYPE_member_t *elm = td->elements; void *st = *sptr; long max_elements = 5; long slb = 0; /* Lower size bound */ long sub = 0; /* Upper size bound */ size_t rnd_len; if(max_length == 0) return result_skipped; if(st == NULL) { st = (*sptr = CALLOC(1, specs->struct_size)); if(st == NULL) { return result_failed; } } switch(asn_random_between(0, 6)) { case 0: max_elements = 0; break; case 1: max_elements = 1; break; case 2: max_elements = 5; break; case 3: max_elements = max_length; break; case 4: max_elements = max_length / 2; break; case 5: max_elements = max_length / 4; break; default: break; } sub = slb + max_elements; if(!constraints || !constraints->per_constraints) constraints = &td->encoding_constraints; if(constraints->per_constraints) { const asn_per_constraint_t *pc = &constraints->per_constraints->size; if(pc->flags & APC_SEMI_CONSTRAINED) { slb = pc->lower_bound; sub = pc->lower_bound + max_elements; } else if(pc->flags & APC_CONSTRAINED) { slb = pc->lower_bound; sub = pc->upper_bound; if(sub - slb > max_elements) sub = slb + max_elements; } } /* Bias towards edges of allowed space */ switch(asn_random_between(-1, 4)) { default: case -1: /* Prepare lengths somewhat outside of constrained range. */ if(constraints->per_constraints && (constraints->per_constraints->size.flags & APC_EXTENSIBLE)) { switch(asn_random_between(0, 5)) { default: case 0: rnd_len = 0; break; case 1: if(slb > 0) { rnd_len = slb - 1; } else { rnd_len = 0; } break; case 2: rnd_len = asn_random_between(0, slb); break; case 3: if(sub < (ssize_t)max_length) { rnd_len = sub + 1; } else { rnd_len = max_length; } break; case 4: if(sub < (ssize_t)max_length) { rnd_len = asn_random_between(sub + 1, max_length); } else { rnd_len = max_length; } break; case 5: rnd_len = max_length; break; } break; } /* Fall through */ case 0: rnd_len = asn_random_between(slb, sub); break; case 1: if(slb < sub) { rnd_len = asn_random_between(slb + 1, sub); break; } /* Fall through */ case 2: rnd_len = asn_random_between(slb, slb); break; case 3: if(slb < sub) { rnd_len = asn_random_between(slb, sub - 1); break; } /* Fall through */ case 4: rnd_len = asn_random_between(sub, sub); break; } for(; rnd_len > 0; rnd_len--) { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); void *ptr = 0; asn_random_fill_result_t tmpres = elm->type->op->random_fill( elm->type, &ptr, &elm->encoding_constraints, (max_length > res_ok.length ? max_length - res_ok.length : 0) / rnd_len); switch(tmpres.code) { case ARFILL_OK: ASN_SET_ADD(list, ptr); res_ok.length += tmpres.length; break; case ARFILL_SKIPPED: break; case ARFILL_FAILED: assert(ptr == 0); return tmpres; } } return res_ok; }