# Copyright 2023 highstreet technologies GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python """ A Class representing a 3GPP new radio cell du (NrCellDu) """ import xml.etree.ElementTree as ET from typing import overload import network_generation.model.python.hexagon as Hexagon from network_generation.model.python.geo_location import GeoLocation from network_generation.model.python.o_ran_node import ORanNode from network_generation.model.python.o_ran_object import IORanObject from network_generation.model.python.o_ran_termination_point import ( ORanTerminationPoint, ) from network_generation.model.python.point import Point # Define the "INrCellDu" interface class INrCellDu(IORanObject): def __init__(self, cell_angel: int, azimuth: int, **kwargs): super().__init__(**kwargs) self._cell_angle = cell_angel self._azimuth = azimuth # Define an abstract O-RAN Node class class NrCellDu(ORanNode, INrCellDu): def __init__(self, cell_data: INrCellDu = None, **kwargs): super().__init__(cell_data, **kwargs) self._cell_angle = ( cell_data["cellAngle"] if cell_data and "cellAngle" in cell_data else 120 ) self._azimuth = ( cell_data["azimuth"] if cell_data and "azimuth" in cell_data else 0 ) @property def termination_points(self) -> list[ORanTerminationPoint]: result: list[ORanTerminationPoint] = super().termination_points result.append( ORanTerminationPoint({"id": self.name, "name": self.name}) ) return result def to_topology_nodes(self) -> list[dict[str, dict]]: # a cell is not a node it is a Termination Point result: list[dict[str, dict]] = [] # super().to_topology_nodes() return result def to_topology_links(self) -> list[dict[str, dict]]: # as a cell is not a node, it does not have links result: list[dict[str, dict]] = [] # super().to_topology_links() return result def toKml(self) -> ET.Element: placemark: ET.Element = ET.Element("Placemark") name: ET.Element = ET.SubElement(placemark, "name") name.text = self.name style: ET.Element = ET.SubElement(placemark, "styleUrl") style.text = "#" + self.__class__.__name__ multi_geometry: ET.Element = ET.SubElement(placemark, "MultiGeometry") polygon: ET.Element = ET.SubElement(multi_geometry, "Polygon") outer_boundary: ET.Element = ET.SubElement(polygon, "outerBoundaryIs") linear_ring: ET.Element = ET.SubElement(outer_boundary, "LinearRing") coordinates: ET.Element = ET.SubElement(linear_ring, "coordinates") points: list[Point] = Hexagon.polygon_corners( self.layout, self.position ) method = GeoLocation( self.parent.parent.parent.parent.parent.parent.geoLocation ).point_to_geo_location geo_locations: list[GeoLocation] = list(map(method, points)) text: list[str] = [] index: int = 1 + int(self._azimuth / self._cell_angle) network_center: GeoLocation = GeoLocation( self.parent.parent.parent.parent.parent.parent.geoLocation ) intersect1: Point = Point( (points[(2 * index + 1) % 6].x + points[(2 * index + 2) % 6].x) / 2, (points[(2 * index + 1) % 6].y + points[(2 * index + 2) % 6].y) / 2, ) intersect_geo_location1: GeoLocation = ( network_center.point_to_geo_location(intersect1) ) intersect2: Point = Point( (points[(2 * index + 3) % 6].x + points[(2 * index + 4) % 6].x) / 2, (points[(2 * index + 3) % 6].y + points[(2 * index + 4) % 6].y) / 2, ) intersect_geo_location2: GeoLocation = ( network_center.point_to_geo_location(intersect2) ) tower: GeoLocation = GeoLocation(self.geoLocation) cell_polygon: list[GeoLocation] = [] cell_polygon.append(tower) cell_polygon.append(intersect_geo_location1) cell_polygon.append(geo_locations[(2 * index + 2) % 6]) cell_polygon.append(geo_locations[(2 * index + 3) % 6]) cell_polygon.append(intersect_geo_location2) # close polygon cell_polygon.append(tower) for geo_location in cell_polygon: text.append( f"{'%.6f' % geo_location.longitude},{'%.6f' % geo_location.latitude},{'%.6f' % geo_location.aboveMeanSeaLevel}" ) coordinates.text = " ".join(text) return placemark def toSvg(self) -> None: return None