# ================================================================================== # Copyright (c) 2020 HCL Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================== import warnings import json import hdbscan import pandas as pd import numpy as np import joblib, os from ad_model.processing import preprocess from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,f1_score from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split # Ranges for input features based on excellent, good, average, & poor category UEKeyList = ['MeasTimestampRF','UEPDCPBytesDL', 'UEPDCPBytesUL', 'UEPRBUsageDL', 'UEPRBUsageUL', 'S_RSRP', 'S_RSRQ', 'S_SINR','UEID'] #UEKeyList = ['S_RSRP', 'S_RSRQ', 'S_SINR','UEID','MeasTimestampRF'] sigstr = {'S_RSRP': {'Excellent Signal' : [-80, 10000000000000000], 'Good Signal': [-90,-80], 'Average Signal':[-100,-90], 'Poor Signal':[-100000000000000000,-100]}, 'S_RSRQ' : {'Excellent Signal' : [-10, 10000000000000000], 'Good Signal': [-15,-10], 'Average Signal':[-20,-15], 'Poor Signal':[-100000000000000000,-20]}, 'S_SINR' : {'Excellent Signal' : [20, 10000000000000000], 'Good Signal': [13,20], 'Average Signal':[0,13], 'Poor Signal':[-100000000000000000,0]}} PRB = {'UEPRBUsageDL': {'Excellent Signal' : [25, 10000000000000000], 'Good Signal': [20,25], 'Average Signal':[10,20], 'Poor Signal':[-100000000000000000,10]}, 'UEPRBUsageUL' : {'Excellent Signal' : [15, 10000000000000000], 'Good Signal': [10,15], 'Average Signal':[5,10], 'Poor Signal':[-100000000000000000,5]}} tput = {'UEPDCPBytesDL': {'Excellent Signal' : [300000, 10000000000000000], 'Good Signal': [200000,300000], 'Average Signal':[100000,200000], 'Poor Signal':[-100000000000000000,100000]}, 'UEPDCPBytesUL' : {'Excellent Signal' : [125000, 10000000000000000], 'Good Signal': [100000,125000], 'Average Signal':[10000,100000], 'Poor Signal':[-100000000000000000,10000]}} def category(df,ranges): """ Based on ranges, each sample is return with category(excellent, good, average, & poor category). """ data = df.copy() for block in ranges: df = data[list(block.keys())].copy() for key, value in block.items(): temp = data[list(block.keys())].copy() for cat, bounds in value.items(): ind = temp[(temp[key] <= bounds[1]) & (temp[key] > bounds[0])].index df.loc[ind, key] = cat data[df.columns] = df category = data[['UEPDCPBytesDL', 'UEPDCPBytesUL', 'UEPRBUsageDL', 'UEPRBUsageUL', 'S_RSRP', 'S_RSRQ', 'S_SINR']].mode(axis = 1)[0] return category class modelling(object): def __init__(self,data): self.time = data.MeasTimestampRF self.id = data.UEID self.data = data.drop(['UEID', 'MeasTimestampRF'], axis = 1) def dbscan(self): """ Train hdbscan for the input dataframe save the hdbscan model """ df = self.data.copy() hdb = hdbscan.HDBSCAN(min_cluster_size=16000, min_samples = 5, prediction_data = True).fit(df) joblib.dump(hdb, '/tmp/ad/hdbscan') self.data['Category'] = hdb.labels_ def RandomForest(self, y): """ Transform categorical label into numeric(Save the LabelEncoder). Create Train and Test split for Random Forest Classifier and Save the model """ df = self.data.copy() le = LabelEncoder() y = le.fit_transform(y) joblib.dump(le, '/tmp/ad/LabelEncoder') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.20, stratify=y, random_state=42) rf = RandomForestClassifier(max_depth=9, random_state=0) rf.fit(X_train, y_train) joblib.dump(rf, '/tmp/ad/RF') print('--------------------------- Training Score------------------------------------') score(X_test, y_test, rf) print('--------------------------- Test Score------------------------------------') test = pd.read_csv('/tmp/ad/ue_test.csv') test = test[UEKeyList] y = category(test, [sigstr, PRB, tput]) y =le.transform(y) ps = preprocess(test) ps.process() test = ps.data.drop(['UEID', 'MeasTimestampRF'], axis = 1) score(test, y, rf) def score(X, y, model): y_pred = model.predict(X) print('Accuracy : {}'.format(accuracy_score(y, y_pred))) print('confusion matrix : {}'.format(confusion_matrix(y, y_pred))) print('f1-score : {}'.format(f1_score(y, y_pred, average = 'macro'))) def train(): """ Main function to perform training on input files Read all the csv file in the current path and create trained model """ print('Training Starts : ') path = '/tmp/ad/ue_data/' df = pd.DataFrame() # Read all the csv files and store the combined data into df for file in os.listdir(path): df = df.append(pd.read_csv(path + file)) df = df[UEKeyList] df.index = range(len(df)) y = category(df, [sigstr, PRB, tput]) seg = {} #Save the category of each UEID and save it as json file for ue in df.UEID.unique(): seg[str(ue)] = list(set(y[df[df['UEID'] == ue].index])) with open('ue_seg.json', 'w') as outfile: json.dump(seg, outfile) # Do a preprocessing, processing and save the model ps = preprocess(df) ps.process() df = ps.data db = modelling(df) # db.dbscan() db.RandomForest(y)